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Mechanical properties and interfacial characteristics of 6061 Al alloy plates
fabricated by hot-roll bonding
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Abstract: This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hot-
roll bonding (HRB) based on friction stir welding. The results showed that ultimate tensile strength and total elongation of the hot-rolled
and aged joints increased with the packaging vacuum, and the tensile specimens fractured at the matrix after exceeding 1 Pa. Non-equilib-
rium grain boundaries were formed at the hot-rolled interface, and a large amount of Mg2Si particles were linearly precipitated along the
interfacial grain boundaries (IGBs). During subsequent heat treatment, Mg2Si particles dissolved back into the matrix, and Al2O3 film re-
maining at the interface eventually evolved into MgO. In addition, the local IGBs underwent staged elimination during HRB, which facil-
itated the interface healing due to the fusion of grains at the interface. This process was achieved by the dissociation, emission, and anni-
hilation of dislocations on the IGBs.

Keywords: 6061 Al alloy; hot-roll bonding; vacuum; mechanical properties; interfacial grain boundaries

  

1. Introduction

Due to good specific strength, corrosion resistance, weld-
ability, and formability, light alloys represented by 6xxx Al
alloy  are  widely  used  in  aerospace,  high-speed  ships,  con-
struction profiles  and other  fields  [1–2].  The corresponding
key components often need to be prepared using large Al al-
loy  ingots  with  fine  grains  and  uniform  composition.
However,  defects  such  as  severe  macro-segregation,  poros-
ity, and cracks often occur in extra-large ingots produced us-
ing  traditional  methods  of  direct  chill  (DC)  casting,  which
seriously reduces the yield and comprehensive performance
of Al alloys [3–5]. And these ingots require prolonged homo-
genization  annealing  to  eliminate  dendrite  segregation  and
extensive milling after subsequent hot rolling due to the cro-
codile  mouth  [6],  which  results  in  higher  energy  consump-
tion and lower yield.

Currently,  solid  phase  bonding  technology  has  been
widely  used  in  the  industrial  field  [7–8],  and  high-quality
heavy  forgings  and  ultra-heavy  steel  plates  have  been  suc-
cessfully  produced  by  hot-compression  bonding  (HCB)
[9–10] and vacuum cladding rolling (VCR) [11], i.e., the pre-
paration of heavy plates or forgings using solid phase bond-
ing of thin plates for thickening. For Al alloys, Hazelett con-
tinuous casting direct rolling (CCDR) process has been able
to  produce  continuous  casting  billets  with  a  thickness  of
about  19  mm  after  years  of  research  and  development
[12–13]. Compared to traditional DC casting, defects such as

macroscopic segregation, porosity and cracks can be effect-
ively avoided because the cooling rate from the surface to the
core is more uniform. Moreover, the thin plates produced by
CCDR do not require a homogenization process and extens-
ive  milling,  which  greatly  reduces  the  production  cost  and
energy consumption of Al alloy thin plates [12,14]. Based on
the above technological achievements, this study introduced
hot-roll bonding (HRB) into the field of Al alloy preparation,
i.e.,  thick  Al  plates  were  prepared  by  roll-bonding  on  con-
tinuous casting billets. It is worth noting that the Al surface
was extremely susceptible to the formation of oxide film that
were highly adhesive, chemically stable and insoluble in the
aluminum substrate, which thickened rapidly with increasing
temperature  [15].  Tang et al.  [16]  conducted  friction-based
additive  manufacturing  on  Al–Mg–Si  alloy  under  atmo-
spheric pressure and found obvious weak-bonding defects at
the  interface.  Therefore,  vacuum  conditions  played  an  im-
portant  role  in  inhibiting  the  thickening  of  surface  oxide
films.  For  this  issue,  vacuum  friction  stir  welding  (FSW)
equipment has been developed for vacuum packaging due to
the poor performance of electron beam welding of Al alloys
[17]. In fact, excessive vacuum conditions can lead to higher
process  costs,  so  it  is  necessary  to  carry  out  HRB  experi-
ments  at  different  vacuum  conditions  to  determine  a  relat-
ively suitable process window.

For the solid phase bonding of Al alloys,  many scholars
have conducted related studies. Xu et al. [18] performed hot
pressing bonding on 2A12 Al alloy and found that the inter- 
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face  healing  was  achieved  by  dynamic  recrystallization
(DRX) induced by the migration of interfacial grain boundar-
ies  (IGBs).  Zhang et al.  [19]  stated  that  discontinuous  dy-
namic recrystallization (DDRX) and geometric dynamic re-
crystallization  (GDRX)  had  a  positive  effect  on  interface
healing  during  vacuum  roll  cladding  of  7050  Al  alloy.  Xu
et al. [20] also reported that DDRX induced by grain bound-
aries (GBs) bulging or particle-stimulated nucleation contrib-
uted to interface healing of 2196 Al alloy during HCB. Yu
et al. [21] found that the interface bonding effect of 6063 Al
alloy  was  positively  correlated  with  hot-pressing  temperat-
ure, and the optimal bonding effect was obtained at 530°C.
Furthermore, Xie et al. [10] found that the bonding interface
of  316LN  stainless  steel  was  gradually  eliminated  during
HCB, followed by the fusion of grains on both sides of the in-
terface, which meant that the healing of the interface origin-
ated from the elimination of IGBs. Therefore, it is necessary
to investigate the interface healing mechanism during HRB
of 6061 Al alloy.

In  addition,  6061  aluminum  alloy  is  a  heat  treatable
strengthening  alloy,  and  the  corresponding  aging  precipita-
tion sequence is as follows: SSSS (super saturated solid solu-
tion) → Atomic clusters (Mg, Si) → GP zones (nano-precip-
itation phase) → β″ (Mg5Si6) [22] → β′ (Mg9Si5) [23] → β
(Mg2Si,  equilibrium  phase)  [24].  During  hot  rolling,  the
second-phase particles in the matrix are heavily precipitated
and coarsened, losing the strengthening effect on the matrix.
Solution  and  aging  treatments  are  required  to  regulate  the

size,  morphology  and  quantity  of  strengthening  phase
particles in the matrix to further regulate the comprehensive
performance  of  the  Al  alloy  plate  after  hot  rolling  [25].
Therefore,  it  is  also  necessary  to  study  the  microstructure
and mechanical  properties of  the aged interface of 6061 Al
alloy.

In this work, 6061 Al alloy was subjected to HRB, solu-
tion and aging treatment under different vacuum, and the mi-
crostructure evolution and mechanical properties at the inter-
face of Al alloy plates were investigated. 

2. Experimental

6061-T6 Al alloy plates with the dimensions of 250 mm ×
250 mm × 25 mm were used in this work, and chemical com-
positions  of  the  materials  are  given  in Table  1. Fig.  1(a)
shows the schematic of HRB. Surface treatment must be car-
ried  out  before  symmetrical  assembly  to  expose  the  fresh
metal.  The  3D  surface  topography  of  the  treated  plates  is
shown in Fig.  1(b),  and the  corresponding roughness  value
(Ra) was 0.53 μm. The treated plates were assembled on the
mechanical device inside the vacuum cabin [19] and welded
under different vacuum (105, 103, 1, and 10−2 Pa), as shown in
Fig. 1(c). Subsequently, HRB with a rolling reduction of 80%
was carried at 530°C. The solution and aging treatment pro-
cess was 540°C × 1 h + 177°C × 8 h. Schematic of sampling
location  and  tensile  sample  shape  on  hot-rolled  and  aged
plates is shown in Fig. 1(d).

  
Table 1.    Composition of materials used wt%

Mg Cu Si Fe Ni Cr Mn Zn Ti
1.02 0.245 0.688 0.459 0.31 0.23 0.12 0.08 0.03
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Fig. 1.    (a) Schematic of HRB, (b) 3D surface topography after surface treatment, (c) assembly and welding in vacuum cabin, and
(d) schematic of sampling location and tensile sample shape.
 

The samples were cut at the interface of the hot-rolled and
aged  plates  using  wire  electrical  discharge  machining,  fol-
lowed by standard metallographic procedures.  The bonding
zone was observed using OLYMPUSDSX500 optical micro-
scope  (OM)  and  electron  probe  micro-analyzer  (EPMA,
JXA-8530F,  JEOL)  after  polishing.  Phase  identification  of

the hot-rolled and aged samples was done by X-ray diffrac-
tion  (XRD,  PANalytical,  XPertpro)  with  Cu  Kα radiation.
Furthermore, the high-temperature confocal laser optical mi-
croscope (CLOM, VL2000DX-SVF17SP/15FTC) was used
to in situ observe the precipitation and dissolution process of
Mg2Si  during  solution  process,  and  corresponding  heating
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process  was  from  room  temperature  to  500°C  at  30°C·s−1,
then to 540°C at 10°C·min−1, and hold for 5 min. To further
investigate  interfacial  characteristics,  EBSD  analysis  was
carried  out  using  a  Zeiss  ultra-55  scanning  electron  micro-
scope (SEM) with the step of 0.1 μm. 

3. Results and discussion 

3.1. Evolution of interfacial microstructures

Fig. 2 shows cross-sectional OM images of the hot-rolled
and  aged  interface  at  different  vacuum.  It  can  be  seen  that
there are discontinuous gaps and obvious inclusion defects at
atmospheric  pressure  as  the  joints  do  not  achieve  complete
physical  contact,  which  leads  to  the  unhealed  interface,  as
shown in Fig.  2(a)  and (b).  When the  vacuum increased to
103 Pa,  local healing occurred at  the interface,  although the
bonding interface still showed obvious traces (Fig. 2(c) and
(d)). As the vacuum increased to 1 Pa and 10−2 Pa, there were
fine black precipitation phase particles intermittently distrib-
uted along the hot-rolled interface (Fig. 2(e) and (g)). After
solution  and  aging  treatment,  these  precipitated  phase
particles dissolved back into the matrix and eventually some
interfacial products were remained at the interface (Fig. 2(f)
and (h)).

In  order  to  investigate  the  microstructure  evolution  of
6061 Al alloy joints, the element distribution and phase com-
position of the hot-rolled and aged bonding interface at 10−2

Pa were detected, and the corresponding results are shown in
Fig. 3. Table 2 shows that the energy spectrum results of the
corresponding points in the hot-rolled microstructure. Many
elliptical  black  granular  precipitates  distributed  intermit-
tently  along  the  hot-rolled  bonding  interface  (about  1  μm
along RN and 0.6 μm along ND), as shown in Fig. 3(a), and
the  energy  spectrum results  indicated  that  such  precipitates
were rich in Mg, O, and Si  elements.  In addition,  it  can be
seen that there were also black precipitates with similar mor-
phology, size, and element distribution in the matrix, indicat-
ing that the precipitates at the interface were the same as the
black  precipitated  particles  in  the  matrix  during  HRB.  The
aged interface showed a linear healing interface locally, and
the precipitated particles at the interface have completely dis-
appeared (Fig. 3(b)), suggesting that the precipitated phase at
the hot-rolled interface dissolved during the subsequent heat
treatment process.

XRD pattern at the hot-rolled and aged interface at 10−2 Pa
was shown in Fig. 4, and the corresponding results indicated
that there were mainly three phases in the hot-rolled micro-
structure  (Fig.  4(a)),  namely α-Al,  Mg2Si  (β),  and  Mg5Si6

(β″). Qian et al. [22] analyzed the formation mechanism of β″
phase through transmission electron microscope (TEM) and
first principles calculations, and found that β″ phase was only
maintained  at  the  nanoscale.  Therefore,  the  larger  black
particle  phase  precipitated  at  the  interface  was  Mg2Si  (Fig.
3(a)).  During  the  sample  preparation  process,  Mg2Si  phase
absorbed O from the air due to its high Mg-rich content, res-
ulting in a higher content of O in EDS detection results, and
Peng et al. [2] also found a similar phenomenon. The white
particle phase in the hot-rolled matrix was an insoluble im-
purity phase contained Fe element (Fig. 3(a)), i.e., α-Al(Mn,
Fe)Si, which was not detected by XRD due to its relatively
low content. The element distribution at the aged interface in-
dicated that the interface contained trace amounts of Mg and
O elements (Fig. 3(b)), indicating that Al2O3 at the interface
eventually evolved into Mg-containing oxides.

The ΔG–T relationship in Fig. 5(a) indicates the oxidation
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reactions of the corresponding metals can all proceed spon-
taneously due to ΔG < 0 [26−27]. During solid-state bonding,
the  oxide  layer  at  the  interface  is  amorphous  Al2O3 with  a
thickness of about 5–10 nm. According to the theory of se-
lective  oxidation,  the  greater  the  affinity  with  O,  the  more
easily  oxides  can  be  formed  [26].  Therefore,  amorphous
Al2O3 film can react with Mg to form crystalline MgO as per
the chemical reaction (1) in the presence of Mg in the alloy
[28]. Panda et al. [29−30] investigated the chemical compos-
ition of the oxide film on the surface of Al–Mg alloys using
real-time in  situ spectroscopic  ellipsometry  (RISE)  and
angle-resolved X-ray photoelectron spectroscopy (AR-XPS),
and  quantitatively  confirmed  that  Al2O3 would  gradually
evolve  into  MgO  in  the  range  of  125–200°C.  In  addition,

MgO further evolved into MgAl2O4 spinel with Al2O3 as per
the  chemical  reaction  (2)  [31]. ΔG–T relationship  about
Al2O3 in the range of 100–700°C is shown in Fig. 5(b) [27].
However, Si et al. [31] revealed that the complete evolution
of  Al2O3 to  MgAl2O4 spinel  requires  a  temperature  of
1550°C.  However,  the  high-temperature  treatment  process
involved in this experiment did not exceed 540°C. Therefore,
the final evolution product (Mg-containing oxides) at the in-
terface  should  be  MgO (Fig.  3(b)).  And  this  result  and  the
corresponding  evolution  process  have  been  confirmed  by
many  researchers  [27–28,32].  However,  due  to  the  ex-
tremely low content of MgO, only two phases were detected
in the aged microstructure by XRD (Fig. 4(b)), namely α-Al,
Mg2Si (β).
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3Mg+Al2O3→ 3MgO+2Al (1)

MgO+Al2O3→MgAl2O4 (2)

To investigate  the  evolution  process  of  precipitate  (β)  at
the interface (marked by microhardness points), high temper-
ature in-situ observation was conducted on the aged joint pre-

 

Table 2.    Energy dispersive spectroscopy (EDS) analysis (wt%) on the selected positions in Fig. 3

Spectrum Al Mg Si O Mn Fe Identification
1 84.77 4.03 4.92 5.90 0.38 0 Mg2Si
2 85.31 0 3.61 0 2.75 8.33 α-Al(Mn, Fe)Si
3 98.47 0.93 0.60 0 0 0 Matrix
4 84.42 3.74 5.39 6.10 0.35 0 Mg2Si
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pared at 10−2 Pa, as shown in Fig. 6. The results show that it is
relatively  difficult  to  identify  the  bonding  interface  around
200°C  (Fig.  6(a)),  and  intermittently  distributed  light  gray
precipitates gradually appeared at the interface after reaching
470°C  (Fig.  6(b)).  Subsequently,  the  precipitated  phase
gradually became clear and distributed along the interface in
the form of black particles (Fig. 6(c)). Dolan et al. [33] repor-
ted that the quenching sensitivity region range of 6061 Al al-
loy was 250–450°C, which meant that β phase would precip-
itate  and  grow  rapidly  within  this  temperature  range.
However, the coarsening temperature of β phase at the inter-
face  was  relatively  high  in  this  experiment,  which  may  be
due to the lag of the actual temperature of the sample caused
by the rapid heating rate. This indicated that the bonding in-
terface of the 6061 Al alloy formed the so-called “non-equi-
librium” GBs  [34],  namely  IGBs,  during  HRB.  Such  non-
equilibrium  GBs  served  as  rapid  diffusion  paths  of  solute
atoms [35] and provided nucleation sites for β phase. During

the  hot  rolling  and  cooling  processes,  the  solute  atoms  on
both  sides  of  the  interface  underwent  strong  segregation  at
IGBs [36],  which  promoted the  formation  and growth of β
phase. During the solution process, the solubility of the alloy
increased with the increasing temperature, and β phase at the
interface gradually dissolved back into the matrix (Fig. 6(d)). 

3.2. EBSD analysis of the IGBs

To further investigate the bonding behavior of 6061 Al al-
loy  during  HRB,  the  grain  structure  of  the  hot-rolled  inter-
face (marked by microhardness points) was analyzed, and the
corresponding EBSD results  are  shown in Fig.  7.  From in-
verse pole figure (IPF) map (Fig. 7(a)), it can be seen that the
hot-rolled  grains  were  significantly  elongated,  mainly  in
[101] orientation, and complete healing occurred at the local
bonding  interface,  i.e.,  IGBs  disappeared  and  the  grains
merged,  as  shown in region 4.  Relevant  literature indicated
that  DDRX  and  GDRX  mechanisms  contributed  signific-
antly to the solid-phase bonding of Al alloys, mainly mani-
fested in the migration and elimination of IGBs [19–20,37].
Therefore, it  is necessary to study the DRX behavior at the
hot-rolled  interface.  Grain  orientation  spread (GOS)  can  be
considered as a measure for dislocation density and strain in
individual grains, and grains with GOS value below 1.8 can
be defined as recrystallization [38]. From the GOS map (Fig.
7(b)), it can be seen that the grains corresponding to region 4
in Fig.  7(a)  was  not  a  recrystallized  grain.  In  addition,  al-
though there were DRX grains on both sides of the interface,
they did not seem to play a critical role in interface healing,
suggesting that another healing mechanism might exist in the
HRB process of 6061 Al alloy.

In this study, grain boundaries within 2° to 10°, 10° to 15°,
and 15° to 60° were defined as low angle grain boundaries
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(LAGBs,  gray),  middle  angle  grain  boundaries  (MAGBs,
red),  and  high  angle  grain  boundaries  (HAGBs,  black),  re-
spectively. Kernel average misorientation (KAM) map (Fig.
7(c)) reflected that the strain at the interface was basically the
same as that of the matrix. Relevant literature indicated that
the main DRX mechanism in 6xxx aluminum alloy was con-
tinuous  dynamic  recrystallization  (CDRX)  [39],  which  was
mainly manifested as follows: First, a large number of dislo-
cations generated by deformation entangled and formed dis-
location  arrays  and  dislocation  cells  (Fig.  7(c)),  which  de-
veloped into LAGBs in the process of continuous dislocation
absorption,  and  then,  LAGBs  continued  to  absorb  disloca-
tions  to  further  grew  into  MAGBs,  and  finally,  subgrains
gradually  rotated  into  HAGBs.  However,  a  phenomenon
similar to the evolution of reverse CDRX was discovered for
the first time at the bonding interface, as shown in Fig. 7(a)
and (d), i.e., the bonding interface transformed from HAGBs
to  MAGBs  to  LAGBs  and  finally  disappeared  completely.
The analysis results of the corresponding stages indicated that
the misorientation along L1–L4 were about  58.6,  13.9,  8.6,
and 0.12, respectively, as shown in Fig. 7(d), indicating that
the compatibility between the grains on both sides of the in-
terface gradually increased during HRB. Furthermore, an im-
portant evidence was found from Fig. 7(a) and (d) that there
were  IGBs  connected  by  LAGBs,  MAGBs  and  HAGBs  at
the  interface.  This  also  indicated  that  the  bonding  interface
underwent  staged  elimination  and  eventually  formed  com-
plete grains, as shown in Fig. 7(a) and (d).

As  mentioned  earlier,  the  evolution  of  grain  boundaries
during thermal deformation is closely related to dislocations.
Dislocations in crystals could be divided into two categories:
statistically  stored  dislocation  (SSD)  and  geometrically
necessary  dislocation  (GND)  [40–41].  SSD  evolves  from
random  trapping  processes,  and  it  is  currently  difficult  to
directly  obtain  its  density  through  relevant  tests.  GND  can
adjust  the  curvature  of  the  crystal  lattice  and  reflect  strain
gradient field. The relevant literature showed that GND could
give a representative trend of the total dislocation density in
FCC [41–42]. GND density (ρGND) measured along L1–L4 is
shown  in Fig.  8.  It  can  be  seen  that  fluctuations  of ρGND

along  L2  (MAGBs)  and  L3  (LAGBs)  are  more  obvious,
which  indicates  that ρGND on  both  sides  of  the  interface
changes  significantly  during  the  staged  elimination  process
of IGBs. Related studies showed that dissociation of HAGBs
into  LAGBs  [43]  and  annihilation  of  GBs  [44]  were  both
achieved by dislocation emission.  The essence was that  the
full  dislocations  on  the  GBs  were  dissociated  into  partial
dislocations and emitted into the grain, i.e., the new disloca-
tion pairs with opposite Burgers vector were created, then the
partial  dislocations  cancelled  out  and  annihilated  with  the
partial dislocations within the grains or at GBs, i.e., the anni-
hilation  of  two  dislocation  pairs  was  produced  by  perfect
counteracting  of  the  two-opposite-pair  Burgers  vectors  of
these two dislocation pairs.  Based on the GND distribution
results (Fig. 8) at the interface, it can be reasonably inferred
that  the  elimination  of  IGBs of  6061 Al  alloy  during  HRB
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was also achieved by dislocation emission and annihilation.
However, due to the effect of CDRX, a large number of dis-
locations were generated during the thermal deformation of
6xxx Al alloy, resulting in the formation of a large number of
substructures. This indicated that the formation and annihila-
tion of GBs (HAGBs) and subgrain boundaries (LAGBs and
MAGBs) during HRB was a dynamic process, but the over-
all  trend  was  that  the  total  amount  of  GBs  and  subgrain
boundaries  was  increasing.  During  this  process,  the  staged
elimination  of  IGBs  contributed  to  interface  healing.  Pole
figures and orientation distribution function (ODF) sections
at  the  hot-rolled  interface  are  shown  in Fig.  9.  It  can  be
seen that there was a very obvious F texture at the hot-rolled
interface. 

3.3. Mechanical properties of the joints

The engineering stress–strain curves of the bonding joints
with  different  vacuum  is  shown  in Fig.  10,  and  ultimate
tensile  strength  (UTS)  and  total  elongation  (TE)  extracted
from Fig. 10 are listed in Table 3. It can be seen that UTS and
TE of the hot-rolled and aged joints increased with the pack-
aging vacuum. Tensile  fracture  morphology of  the bonding
joints  (the  tensile  frontal  and profile  fracture  characteristics
are located in the upper right and lower left corners of the im-
ages, respectively) at 105 Pa and 1 Pa is shown in Fig. 11. At
105 Pa, the macroscopic fractures of both hot-rolled and aged
joints are relatively flat, with locally smooth areas and small
and shallow dimples on the fracture surfaces (Fig. 11(a) and
(b)),  which  indicates  weaker  bonding  effects  are  obtained.
And the EDS results indicate that there is significant oxida-
tion on the fracture surface of the hot-rolled joint at 105 Pa. At
1  Pa,  both  hot-rolled  and  aged  joints  underwent  significant
deformation during the tensile process, with the fracture sur-

face showing large and deep dimples (Fig. 11(c) and (d)). In
addition, there are a large number of second phase particles in
the dimples of hot-rolled and aged fractures. The EDS results
indicate  that  the  particle  in  the  hot-rolled  matrix  is  Mg2Si
phase, and the insoluble impurity phase particle in the aged
matrix  is  Al6(Mn,  Fe)  phase.  Based  on  the  corresponding
tensile curves, it can be seen that under 105 and 103 Pa condi-
tions,  the  elongation  of  the  bonded  joint  is  significantly
lower, and the fracture mode is brittle fracture. After the va-
cuum reaches 1 Pa, UTS and TE of the corresponding hot-
rolled  joints  are  163  MPa  and  44.9%,  respectively.  After
solution  and  aging  treatment,  the  strength  of  the  joint  in-
creases  to  306  MPa,  and  the  corresponding  plasticity  de-
creases to 20.9%. The interface still showed good metallur-
gical bonding effect and ductile fracture occurred. The UTS
of T6-AA6061 Al alloy obtained by Nagasai et al. [45], Liu
et al. [1], and Thakur et al. [46] was 318 MPa, 301 MPa, and
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Table 3.    UTS and TE extracted from Fig. 10

Vacuum degree / Pa
UTS / MPa TE / %
The hot-rolled The aged The hot-rolled The aged

105 155 ± 16 285 ± 36 17.5 ± 11.3 11.0 ± 6.8
103 161 ± 12 297 ± 18 34.1 ± 9.7 16.9 ± 5.1
1 163 ± 10 306 ± 15 44.9 ± 6.5 20.9 ± 3.7
10−2 166 ± 10 305 ± 13 47.1 ± 4.3 22.5 ± 2.3
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282 MPa, respectively. Therefore, it is necessary to increase
the vacuum condition to more than 1 Pa during HRB of 6061
aluminum alloy. 

3.4. Interfacial evolution mechanism

Based on the  results  described above,  the  interfacial  mi-
crostructure evolution of 6061 Al alloy during HRB and heat-
treatment can be schematically summarized, as shown in Fig.
12. At 105 Pa, there were significant cracks at the bonding in-
terface (Fig.  12(a)).  When the vacuum increased to  103 Pa,
Mg2Si particles were precipitated along the locally healed in-
terface. However, due to excessive oxidation, the bonding ef-
fect  at  the  interface  was  still  poor  (Fig.  12(b)),  leading  to
brittle fracture. As the vacuum exceeded 1 Pa, good metallur-
gical bonding was achieved at the joints due to the effective

reduction  of  oxidation,  the  hot-rolled  bonding  interface
formed the non-equilibrium GBs,  namely IGBs,  and Mg2Si
particles  were  precipitated  along  the  IGBs  due  to  the  de-
crease  in  solubility  during  the  subsequent  cooling  process
(Fig.  12(c)).  In  addition,  during  the  hot  deformation,  the
solute atoms have completely dissolved back into the matrix
due  to  the  high  temperature  (530°C),  the  bonding  interface
mainly underwent the evolution of grain structure, i.e., part of
IGBs transformed from HAGBs to MAGBs to LAGBs, and
eventually  disappeared  completely  (Fig.  12(e)),  which  con-
tributed to the interface healing.  This process was achieved
by the dissociation, emission, and subsequent annihilation of
dislocations on the IGBs. The trace amount of Al2O3 film at
the  interface  eventually  evolved  into  MgO  during  solution
and aging treatment (Fig. 12(d)). 
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4. Conclusions

In  this  work,  mechanical  properties  and  interfacial
microstructure  evolutions  of  6061  Al  alloy  bonding  joints
produced  by  hot-roll  bonding  based  on  friction  stir  weld-
ing  were  investigated.  The  results  can  be  summarized  as
follows:

(1) Mechanical properties of the joints produced by HRB
increased  with  the  packaging  vacuum.  At  105 and  103 Pa,
there were obvious inclusion defects  at  the interface due to
excessive  oxidation.  And  the  corresponding  tensile  speci-
mens  both  fractured  at  the  joints,  showing  obvious  brittle
fracture.

(2)  After  exceeding  1  Pa,  metallurgical  bonding  was
achieved at the interface due to a significant reduction in ox-
idation.  And  the  corresponding  hot-rolled  and  aged  speci-
mens both fractured at the matrix with UTS of about 163 and
306 MPa.

(3)  After  exceeding  1  Pa,  local  IGBs  transformed  from
HAGBs to MAGBs to LAGBs, and eventually disappeared
during HRB, which contributed to the interface healing. This
process was achieved by the dissociation, emission, and sub-
sequent annihilation of dislocations on the IGBs.

(4) After exceeding 1 Pa, the hot-rolled interface formed
the non-equilibrium GBs. Mg2Si particles were linearly pre-
cipitated along the IGBs during the cooling after rolling, and
dissolved into the matrix during solution treatment. The trace
amount  of  Al2O3 film remaining  at  the  interface  eventually
evolved into MgO. 
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