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Abstract: Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil, hydraulic, mech-
anical,  aerospace,  military,  and other  engineering disciplines.  Therefore,  the  comprehensive  study of  the  generalized nonlinear  strength
theory (GNST) of geomaterials has significance for the construction of engineering rock strength. This paper reviews the GNST of geo-
materials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths. First, it sys-
tematically summarizes the research progress of GNST (classical and empirical criteria). Then, the latest research the authors conducted
over  the  past  five  years  on  the  GNST  is  introduced,  and  a  generalized  three-dimensional  (3D)  nonlinear  Hoek‒Brown  (HB)  criterion
(NGHB criterion) is proposed for practical applications. This criterion can be degenerated into the existing three modified HB criteria and
has a better prediction performance. The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%–3.5091% and
1.0144%–3.2321%, respectively. Finally, the development and outlook of the GNST are expounded, and a new topic about the building
strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed. The summarization of the GNST
provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.

Keywords: rock mechanics; rock mass  strength; strength theory; failure  criterion; Hoek–Brown criterion; intermediate  principal  stress;
deviatoric plane; smoothness and convexity

  

1. Introduction

Strength theory is the science of studying the regularities
of  material  yielding  or  failure  under  complex  stress  states.
Generally, the failure (strength) criterion is adopted to judge
the  material  yield  and  failure,  which  characterizes  the  rela-
tionship between the stress state and strength parameters of
the  material  under  the  limit  state  (failure  condition)  [1–2].
The generalized failure includes the material transformation
from an elastic to a plastic state; in other words, strength the-
ory comprises the yield and failure criteria.  Strength theory
(or  criterion)  is  an  interdisciplinary  field  studied  by  physi-
cists, material scientists, geoscientists, mechanical engineers,
civil engineers, and mining engineers.

In the past 30 years, with the successful solution of com-
plex  geological  and  rock  engineering  problems  in  many
projects,  the  development  of  rock  mechanics  has  been
strongly promoted. These projects include the Qinghai–Tibet
railway, central Yunnan water diversion, south-to-north wa-
ter  diversion,  west-to-east  power  transmission,  west-to-east
gas transmission, the national traffic trunk lines, resource ex-
ploitation,  urban  underground  space  development  and  use,

high  and  steep  slopes,  and  deep  buried  long  large  tunnels.
However, ensuring the economy of engineering construction,
reducing the high carbonization of the engineering construc-
tion lifecycle [3], and avoiding rock engineering disasters al-
ways involve the in-situ rock mass strength, which has been
the  core  bottleneck  concerning  underground  engineering.
This primary research is about the source of the underground
engineering system and is directly related to the national eco-
nomic operation and disaster prevention and control. There-
fore, it is of considerable theoretical value to summarize and
prospect  the  research  progress  of  the  generalized  nonlinear
strength theory (GNST) for building a new generation of in-
situ engineering  rock  mass  strength  under  complex  stress
conditions.  It  has  critical  strategic  significance for  develop-
ing national underground engineering.

Over 100 failure criteria have been proposed, and tens of
thousands  of  application  research  papers  on  failure  criteria
have been published [4–5]. Based on the differences in these
established theoretical frameworks, the failure criteria can be
divided into classical and empirical (e.g.,  the HB criterion).
Classical criteria, such as Mohr–Coulomb (MC) and Druck-
er–Prager  (DP),  have been widely  used in  geotechnical  en- 
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gineering. However, the classical criteria have many limita-
tions. Some criteria only apply to specific geomaterials or can
be fitted according to the test results of particular geomateri-
als  and  lack  a  unified  understanding  of  the  fundamental
strength characteristics of geomaterials. Not all mathematic-
al  forms  and  parameter  meanings  of  criteria  with  the  same
theoretical  basis  are  the  same,  and  some  parameters  even
have unclear physical meanings. For nonlinear empirical cri-
teria,  a theoretical system with the HB criterion as the core
has  been  formed  through  continuous  development  and  im-
provement. The HB criterion can be applied to rock and rock
mass, and the material constants can be obtained by laborat-
ory experiments and mineral  composition and discontinuity
descriptions  [6].  However,  the  HB  criterion  does  not  con-
sider  the  influence  of  intermediate  principal  stress  (IPS),
making it challenging to determine its parameters accurately.
Thus, it has poor applicability to jointed rocks with apparent
anisotropy.

Therefore,  many scholars  have  extended  the  single  clas-
sical and empirical criteria and proposed the GNST [7], such
as  the  single- or  multiparameter  three-shear  strength  theory
[8], the MC series strength theory [9], the Matsuoka–Nakai
(MN) series strength theory [10],  HB series strength theory
[11], and other strength theories [12]. “Generalized” is synony-
mous with “unified,” indicating that  the criterion applies  to
various materials. “Nonlinear” indicates the feature of the cri-
terion, i.e., the failure envelope on the deviatoric or meridian
planes is a continuous and smooth curve. The “strength the-
ory” includes a yield criterion describing plastic deformation
and a failure criterion representing failure conditions. GNST
(classical and empirical criteria) research is primarily based
on laboratory experiment results or theoretical derivation.

Since its establishment, the International Society for Rock
Mechanics  and  Rock  Engineering  (ISRM)  has  defined  its
work  objective:  determining “what  is  rock  mass  strength.”
After  over  60  years  of  development,  many  scholars  have
made considerable efforts and achieved remarkable results in
large-scale slopes, long large tunnels, ground foundations un-
der  complex  geological  conditions,  hydropower  dams,  and
energy exploitation [13–15].  However,  the core problem of
in-situ rock mass strength has not been effectively solved.

This paper systematically describes the research progress
of the GNST, summarizes and condenses the advantages and
disadvantages  of  various  GNSTs,  and  graphicalizes  most
GNSTs, which play a positive guiding role in further under-
standing them. Based on the defects of the existing GNSTs,
the authors present the latest research on generalized nonlin-
ear classical and HB criteria. A generalized 3D nonlinear HB
(NGHB) criterion is proposed, and research on rock and in-situ
rock mass strength prediction is performed. The NGHB crite-
rion lays a theoretical foundation for establishing in-situ engin-
eering rock mass strength under complex stress conditions. 

2. Research  status  of  generalized  nonlinear
classical criteria

Over  the  past  100  years,  many  scholars  have  devoted
themselves to studying the strength characteristics of geoma-
terials and established numerous generalized nonlinear clas-
sical  failure  criteria  (classical  GNFCs).  This  goal  can  be
achieved using the following standard steps. (1) Establish the
GNFC based on single or multiple classical criteria. (2) Pro-
pose  a  new  classical  criterion  improved  by  the  deviatoric
plane function (also called the shape function [16]). (3) Im-
prove the classical criteria based on laboratory experiments.
(4)  Improve  the  classical  criteria  by  considering  the  aniso-
tropy of geomaterials. (5) Improve the classical criteria using
other  methods,  such  as  the  IPS  coefficient.  This  paper  re-
views the research on classical GNFCs from the above five
aspects.

The GNSTs (classical and empirical criteria) described in
this  paper  are  frequently  expressed  in  terms  of  principal
stresses or stress invariants. To understand and clarify the re-
lationship between the two representations,  it  is  first  neces-
sary to elucidate their relevant concepts. 

2.1. Stress state in terms of stress invariants

It  is  assumed that the geomaterials are isotropic,  and the
compressive stress is specified to be positive. Fig. 1 [17] ex-
presses  the  stress  state  at  any  point  in  the  principal  stress
space as P(σ1, σ2, σ3), where σ1, σ2, and σ3 represent the three
principal  stresses.  Rays with equal  inclination angles  to  the
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three coordinate axes in the principal stress space are called
space diagonals  (the hydrostatic  axis).  The plane where the
hydrostatic axis lies is the meridian plane, and the plane or-
thogonal to the meridian plane is the deviatoric plane [1]. The
deviatoric plane passing through point O is the π plane. The
stress  state  at  any  point  on  the  deviatoric  plane  is  typically
described by the π plane normal stress ξ or mean stress p, π
plane shear  stress r or  generalized shear  stress q,  and Lode
angle θσ or θ. ξ represents  the  distance  from the  deviatoric
plane to the origin O, whereas r is that from the stress point P
to the hydrostatic axis. The Lode angle θσ (0 ≤ θσ ≤ π/3) is the
parameter describing the position of the stress point P on the
deviatoric plane. According to Nayak and Zienkiewicz [18],
the invariants (ξ, r, θσ) or (p, q, θσ) are defined as

ξ =
I1√

3
or p =

I1

3
r =
√

2J2 or q =
√

3J2
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1
3

cos−1

3
√

3
2

J3

J3/2
2


(1)

where I1 is the first invariant of the stress tensor, and J2 and J3

are  the  second  and  third  invariants  of  the  stress  deviator
tensor, respectively.

Based on the invariants I1, J2, and θσ, the principal stresses
σ1, σ2, and σ3 can be expressed as

σ1 =
1
3

I1+
2
√

3

√
J2cosθσ

σ2 =
1
3

I1+
2
√

3

√
J2cos

(
θσ−

2π
3

)
σ3 =

1
3

I1+
2
√

3

√
J2cos

(
θσ+

2π
3

) , 0 ≤ θσ ≤
π
3

(2)

 

2.2. General curved yield criteria
 

2.2.1. General  yield  criteria  between  the  Tresca  and  von
Mises criteria

Hershey [19],  Davis  [20],  Hosford [21],  Barlat  and Lian
[22],  Tan  [23],  Karafillis  and  Boyce  [24],  and  Owen  and
Perić [25] proposed general curved yield criteria, containing
a range of  yield criteria  between the Tresca and von Mises
criteria. Karafillis and Boyce [24] expressed a general curved

yield criterion between the Tresca and von Mises criteria as

Φ = (σ1−σ2)2k + (σ2−σ3)2k + (σ3−σ1)2k = 2σ2k
0 (3)

where k is the material constant ranging in [1, +∞), and σ0 is
the yield stress in uniaxial tension.

Eq. (3) is related to the stress yield function of Davis [20]
and is a general form of Bialey’s flow law [26]. Its yield sur-
face  is  inside  the  von  Mises  yield  criterion  and  outside  the
Tresca yield criterion.  This  criterion (Eq.  (3))  is  also called
the Bailey–Davis criterion. 

2.2.2. General yield criteria between the twin–shear and von
Mises (or Tresca) criteria

Karafillis  and  Boyce  [24]  proposed  two  general  curved
yield  criteria.  One  is  a  series  between  the  von  Mises  and
twin–shear  yield  criteria  (Fig.  2(a)  [24]),  and  the  other
is  those  between  the  Tresca  and  twin–shear  yield  criteria
(Fig. 2(b) [24]). 

2.2.3. Edelman–Drueker and Hosford criteria
Edelman and Drucker [27] proposed the criterion named

after them, expressed as

F = J3
2 −CdJ2

3 (4)
where Cd is the material constant and F is the yield function.

Dodd  and  Naruse  [28]  extended  the  Edelman‒Drueker
criterion  and  proposed  the  Dodd‒Naruse  criterion  1,  ex-
pressed as

F =
(
J3

2

)m
−Cd

(
J2

3

)m
(5)

where m is the material constant.
When  the  material  constant m is  an  integer,  the  Dodd‒

Naruse  criterion  1  exhibits  equal  yield  stress  under  tensile
and compressive conditions, and if σ3 = 0, it is expressed as
σ1

σu
=

(
1
3

)3m

−Cd

(
2

27

)2m

[
1
3

(1−ε+ε2)
]3m
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[
1
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(2−ε) (1−2ε) (1+ε)
]2m



1
6

(6)
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ε =
σ2

σ1
(7)

where σu is the uniaxial yield stress. The material constant ε
ranges  in  (−∞,  0.5]  and  the  material  constant Cd in  [−27/8,
9/4].

Later, Dodd and Naruse [28] proposed a generalized yield
criterion (the Dodd‒Naruse criterion 2), expressed as

[
1
2

(σ1−σ2)t +
1
2

(σ1−σ3)t

] 1
t
= σu,

(σ1−σ2) ≥ (σ2−σ3)[
1
2

(σ1−σ3)t +
1
2

(σ2−σ3)t

] 1
t
= σu,

(σ1−σ2) < (σ2−σ3)

(8)

where t is a material constant that takes values in the range
[1, +∞).

When t approaches positive infinity, the Dodd‒Naruse cri-
terion  2  degenerates  to  the  Tresca  criterion.  When t ∈
[1, +∞), Eq. (8) can give a series of yield curves, all of which
have corner points (Fig. 3(a) [28]).

Furthermore,  Hosford  [21]  proposed  a  straightforward
general form of isotropic yield criterion (Hosford criterion),
which  is  closer  to  the  experimental  and  theoretical  results
than the von Mises or Tresca criteria. It is expressed as[

(σ1−σ2)t + (σ2−σ3)t + (σ1−σ3)t

2

] 1
t
= σ0 (9)

σ1 ≥ σ2 ≥ σ3, 1 ≤ t ≤ +∞ (10)
When t = 2, the Hosford criterion degenerates to the von

Mises criterion, and when t = 1, this criterion degenerates to
the Tresca criterion (Fig. 3(b) [21]). 

2.2.4. Simplified anisotropic yield criteria
Hill [29] proposed a new yield criterion, expressed as

f ′|σ2−σ3|w+g′|σ3−σ1|w+h′ |σ1−σ2|w+
a′ |2σ1−σ2−σ3|w+b′ |2σ2−σ1−σ3|w+
c′|2σ3−σ1−σ2|w = σw

s (11)

where σs is a scaling factor for the stresses, w is the material
constant (w ≥ 1), and f', g', h', a', b', and c' are constants re-

flecting the anisotropic characteristics. When f' = g' = h' and
a' = b' = c', the isotropic case becomes a three-parameter cri-
terion.

Dodd and Naruse [28] improved Eq. (11) (f' = g' = h' = 1),
obtaining the following expression:

|σ2−σ3|w+ |σ3−σ1|w+ |σ1−σ2|w+a′|2σ1−σ2−σ3|w+
b′|2σ2−σ1−σ3|w+ c′|2σ3−σ1−σ2|w = σw

s (12)
When w ∈ [1, +∞), a range of curved yield criteria is ob-

tained  between  the  single-shear  and  twin-shear  stress  yield
criteria.

Hosford [21] and Barlat et al. [22,30–31] also introduced
similar anisotropic yield criteria. 

2.2.5. Other generalized nonlinear failure criteria
Zienkiewicz  [32]  proposed  a  general  expression  of  the

unified yield criteria, which can attribute most yield criteria
to the theoretical framework of the general formula. It is still
the basis on which many scholars propose the unified yield
criteria. Later, Desai [33], de Boer [34], Shen [35], and Krenk
[36] proposed new unified yield criteria in polynomial form.

The general curved yield criteria mentioned in Section 2.2
satisfy the smoothness and convexity requirements. Most are
between the Tresca and von Mises criteria or the single- and
twin-shear yield criteria.  These criteria are inconvenient for
elastic-plastic analysis [37]. 

2.3. GNFCs  capable  of  degenerating  into  a  single  cri-
terion

Aubertin et al. [38] proposed the von Mises and DP uni-
fied (MSDPu) criterion, the failure envelope of which the de-
viatoric  plane degenerates into a  circle,  as  described by the
von Mises or DP criteria. Zhou et al. [39] proposed a revised
DP yield criterion by referring to the modified DP criterion of
the deviatoric plane function of the MSDPu criterion. Zhou
and Li [40] proposed a GNFC with a DP criterion expression
based  on  the  experimental  study  of  friction  materials.  This
criterion can degenerate into the DP criterion, which can de-
scribe  the  strength  characteristics  of  various  materials  from
the MC criterion (exclusive) to the DP criterion (Fig. 4). 
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2.4. GNFCs capable of degenerating into two criteria
 

2.4.1. GNFCs between the von Mises and MC criteria
Zhang et al.  [41]  proposed  a  frozen  silt  soil  failure  cri-

terion by modifying the slope of the q–p curve on the meridi-
an plane to  explore  the change regularity  of  the frozen soil
strength, expressed as

q = k1g (θσ) (13)
with the included terms in Eq. (13) defined as

k1 = M0 p+ c0

[
1+

(
p
c1

)v]
exp

[
−
(

p
c1

)v]
(14)

g (θσ) =

(1− c2)
(
3− sinφ

)
3
[
1+ (1/

√
3)tanθσsinφ

] + c2

c2+ (1− c2)cosθσ
(15)

k1

where M0 is the initial stress ratio, c0 is the initial cohesion, c1

and v are material parameters, φ is the internal friction angle,
c2 is the control parameter ranging in [0, 1], and  is the de-
viatoric stress value in the meridian plane. g(θσ)  is  a devia-
toric plane function.

When c2 = 0, the criterion proposed by Zhang et al. [41]
degenerates into the MC criterion, and the shape of the fail-
ure envelope on the deviatoric plane is an irregular hexagon.
When c2 =  1,  this  criterion  degenerates  into  the  von  Mises

criterion, and the shape becomes circular. When 0 < c2 < 1,
the failure envelope is approximately pear-shaped.

Liu et al. [42] established the failure criterion of frost soil
by considering the nonlinearity and asymmetry of frozen soil
strength on the meridian plane and introducing the deviatoric
plane function.  When s1 =  0,  the  criterion proposed by Liu
et al. [42] degenerates into the MC criterion with an irregular
hexagon failure envelope on the deviatoric plane. However,
when s1 =  1,  this  criterion  degenerates  into  a  circular  von
Mises criterion (Fig.  5).  This criterion applies to the frozen
soil strength changes of the three types: front peak, symmet-
ric, and back peak. 

2.4.2. GNFCs between the DP (or von Mises) and MN cri-
teria

The  GNFC  failure  envelope  (Table  1 [43–51])  between
DP (or von Mises) and MN criteria is a series of continuous,
smooth, and convex curves. The criteria cover the DP (or von
Mises) and MN criteria, which can reflect the strength char-
acteristics  of  metal  and  friction  materials.  However,  some
mathematical  expressions,  such  as  Du et al.  [44],  who pro-
posed a generalized von Mises and MN unified (GMMNu)
criterion, are complex and challenging to separate stress in-
variants. Due to space limitations, this paper only lists the de-
viatoric  plane  shapes  of  the  criteria  proposed  by  Liu et al.
[46] and Lu et al. [49] (see Fig. 6). 
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2.4.3. GNFCs  between  the  DP  (or  von  Mises)  and  LD cri-
teria

Inspired by the GMMNu criterion [44], Liu et al. [52] pro-
posed  the  generalized  von  Mises  and  Lade‒Duncan  (LD)
unified criterion,  which can degenerate into the generalized
von Mises and LD criteria. Similar to the GMMNu criterion,
this  one  cannot  separate  the  stress  invariants.  Furthermore,
He et al. [53]  proposed  a  nonlinear  3D  unified  failure  cri-
terion for frozen soil to consider its composite properties and
internal nonhomogeneity. Wang et al.  [54] proposed a non-
linear unified failure criterion to capture the complex strength
characteristics of geomaterials under 3D stress paths (Fig. 7).

The  above  GNFCs  can  degenerate  into  the  generalized
von Mises and LD criteria. Its failure envelope covers a series
of continuous, smooth, and convex curves between the two
criteria,  which  can  describe  the  strength  characteristics  of
various geomaterials. 

2.4.4. GNFCs between the MN and LD criteria
Based on the MN and LD criteria, Mortara [55] derived a

general expression for the stress tensor invariants of this cri-

terion family. This criterion can degenerate into the MN and
LD criteria (Fig. 8), which can reasonably describe the fail-
ure  behavior  of  isotropic  and  cross-anisotropic  materials.
Furthermore,  Xiao et al.  [56]  proposed  a  new  failure  cri-
terion for various particulate materials based on the MN and
LD criteria.

The failure envelope shapes of the above GNFCs cover all
those  between  the  MN  and  LD  criteria,  and  the  envelopes
satisfy the requirements of smoothness and convexity. 

2.5. GNFCs capable of degenerating into three criteria
 

2.5.1. GNFCs between the von Mises, MN, and LD criteria
Wan and Liu [57] proposed a new GNFC based on the von

Mises, MN, and LD criteria (VML criterion), expressed as
I x−3y

1 I(3−x)/2
2

I1−y
3

= c3 (16)

c3 =

(
3− sinφ

)x−3y(3+ sinφ
)1.5−0.5x(

1+ sinφ
)1−y(1− sinφ

)0.5x−2y+0.5 (17)

where x, y, and c3 are material constants.

 

Table 1.    GNFCs between the DP (or von Mises) and MN

Presenter Covered classic
criteria Commentary on the criterion

Yao et al. [43] and
Du et al. [44]

Generalized von Mises and
MN criteria

Can reasonably describe the nonlinear strength characteristics of various materials,
such as metal, concrete, rock, sand, and clay; however, it is not easy to separate
stress invariants

Xiao et al. [45] Generalized von Mises and
MN criteria Can describe the anisotropy and nonlinear strength characteristics of soil

Liu et al. [46] DP and MN criteria Can predict the multiaxial strength of various geomaterials (Fig. 6(a))

Zhang et al. [47] DP and extended DP [48]
criteria

To solve the problem of the EDP that can only apply to the condition of the internal
friction angle less than 22°

Lu et al. [49] DP and MN criteria
The test shows that the Lu criterion can be applied to a series of geomaterials.
However, only when the internal friction angle of the material is acquired can the
parameter b (reflecting the IPS effect) be determined (Fig. 6(b))

Wan et al. [50] Generalized von Mises and
MN criteria

Can predict the failure behavior of soil, concrete, rock, and other materials and
transform the traditional 2D constitutive model into a 3D model

Wan et al. [51] Generalized von Mises and
MN criteria

Can reflect the anisotropic properties of many materials, such as metal, rock,
concrete, clay, and sand, with parameters with clear physical meanings
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When x = 1 and x = 3, the VML criterion degenerates into
the MN and LD criteria, respectively. As x increases, the in-
fluence  of  the  Lode angle  on  the  VML criterion  decreases.
When x = 100, the shape of the failure envelope is close to the
circle  of  the  von Mises  criterion.  When y =  2,  with  the  in-
crease  in x,  the  shape  of  the  failure  envelope  gradually
changes from convex to concave. When x = 7, the failure en-
velope does not meet the convexity requirements. 

2.5.2. GNFCs  between  the  MC,  DP,  and  Mogi–Coulomb
criteria

Based  on  the  characteristics  of  peak  failure  strength  of

deep hard rocks, Feng et al. [58–59] proposed a 3D hard rock
failure criterion (3DHRFC), expressed as(
σ1−σ3

sinφb

)2

=
(
σ1+σ3+2c4cotφ0

)2
+a0 (18)

When a0 = 0, the 3DHRFC degenerates into a linear ex-
pression,√

J2 =

 2
√

3I1sinφ0

3
(
3− sinφ0

) + 2
√

3c4cosφ0

3− sinφ0

g (θσ) (19)

where

g (θσ) =
3− sinφ0

√
3cosθσ

√
S
(√

3tanθσ+1
)2
−2
√

3tanθσ+2+
(
2
√

3cosθσ−3
)
T sinφ0+2sinθσsinφ0

(20)

sinφb =
sinφ0√

1−b+S b2+T
(
1−
√

1−b+b2
)
sinφ0

(21)

where a0, S, and T are material constants, c4 is the cohesion of
the rock peak failure strength under generalized triaxial com-
pression, and φb is the internal friction angle corresponding to
different IPS coefficients b. When b = 0, sinφb = sinφ0.

Research shows that when a0 = 0 and b = 0, the 3DHRFC
degenerates into the MC criterion.  Therefore,  the linear ex-
pression of  the 3DHRFC can be regarded as  the 3D exten-

sion  of  the  MC  criterion.  When a0 =  0  and g(θσ)  =  1,  the
3DHRFC degenerates into the DP criterion, and when a0 = 0,
S = 1, and T = 0, it degenerates into the Mogi–Coulomb cri-
terion.  The  failure  envelope  of  the  linear  3DHRFC  at  the
corner  points  makes  it  challenging  to  meet  the  smoothness
requirement (Fig. 9 [58–59]). 

2.6. GNFCs covering more than three criteria
 

2.6.1. GNFC applicable to geomaterials
Many scholars have proposed GNFCs (Table 2 [60–68])
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that  can  be  degenerated  into  more  than  three  criteria  and
strived to use a unified mathematical expression to include or
approximate the existing classical criteria. These criteria lay
the foundation for the unified strength theory system. Due to
space  limitations,  this  paper  only  lists  the  deviatoric  plane
shapes of the criteria proposed by Bigoni and Piccolroaz [60]
and Qiu et al. [65] (see Figs. 10 and 11). 

2.6.2. GNFC for polygon-shaped deviatoric plane
The envelope shapes of most failure criteria in the above

classical  GNFCs  are  primarily  circular,  regular  hexagons,
and curved triangles.  Many scholars improve the deviatoric
plane function or introduce new parameters based on exist-
ing criteria  to  establish GNFCs,  which have become a  hot-
spot and development tendency of GNSTs.

This section introduces a class of GNFCs. The deviatoric
plane shapes of these criteria can cover various forms, includ-
ing triangles, hexagons, dodecagons, quadrangles, and circles
(Table 3 [69–70]). It should be highlighted that because the
expressions of some criteria mentioned above are rather com-
plex  and  the  deviatoric  planes  are  mostly  piecewise  linear
shapes, these criteria have yet to be applied in geomaterials
and only serve to ensure the integrity of the criteria. 

2.7. Other types of GNFCs

The envelope shapes on the deviatoric plane for the GN-
FCs  described  in  this  section  are  close  or  approximate  to
those of the classical criteria (Table 4 [71–76]). These criter-
ia  have  theoretical  significance  in  describing  the  strength
characteristics of geomaterials. Due to space limitations, this

paper only lists the deviatoric plane shapes of the criteria pro-
posed by Ehlers [71] and Li and Tang [72] (see Fig. 12).

Some  GNFCs  proposed  by  many  other  scholars  are  not
presented due to limited space, such as the new isotropic fail-
ure  criterion  [77]  for  friction  materials,  egg  shape  criterion
[78],  3D  failure  criterion  for  rocks  considering  brittle  and
ductile  domains  [79],  MN–LD failure  criterion  [80],  aniso-
tropic  failure  criterion  of  geomaterials  [81],  modified  Grif-
fith criterion [82], modified MC criterion [83–84], and uni-
fied strength theory [85].

Nowadays,  all  underground  engineering  construction
should research the basic characteristics of geomaterials, es-
pecially  the  mechanical  properties,  including  the  nonlinear
and deformation behavior of geomaterial strength under high
stress and complex stress path conditions. Most existing clas-
sical GNFCs have been developed to the degree that they can
be applied to various materials, making the failure envelope
on the deviatoric plane meet the requirements of smoothness
and convexity and covering or approximating more classical
criteria by a unified mathematical expression. Some scholars
have also developed corresponding constitutive models based
on classical GNFCs. However, the study on the classical GN-
FC stays at the sample scale of geomaterials, and the materi-
al parameters are determined empirically at the sample scale
or based on the classical criterion. No reports exist on apply-
ing  classical  GNFCs  to  the  strength  of  engineering  rock
mass; therefore, the existing strength problems of rock mass
are  still  based  on  the  HB  (or  improved  HB)  empirical  cri-
terion. 

 

Table 2.    GNFCs of geomaterials degenerated into more than three classical criteria

Presenter Covered classic criteria Commentary on the criterion

Bigoni and
Piccolroaz [60]

von Mises, DP, Tresca,
modified Tresca, MC, modified
Cam-clay, Rankine, and
Ottosen

Can simulate the inelastic behavior of pressure–sensitive, frictional, ductile, and
brittle–cohesive materials; however, the physical meaning of the introduced two
new parameters β1 and γ1 is unclear (Fig. 10). Parameters β1 and γ1 model the shape
of the deviatoric plane

Mortara [61]
MN and LD criteria, and
criteria proposed by Lade [62],
Kim and Lade [63], and
Houlsby [64]

Can describe the strength behavior of clays, sands, and rocks quite well

Qiu et al. [65]
von Mises, Tresca, MC, DP,
MSDPu [38,66], and
generalized polyaxial strain
energy strength criteria [67]

The criterion has a higher fitting accuracy than the MC, HB, modified
Wiebols–Cook [68], modified Lade, DP, and Mogi criteria. The specific behaviors
of some hard rocks need more in-depth experimental study to be revealed (Fig. 11)
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Table 3.    GNFCs of polygon envelopes on the deviatoric plane [69–70]

GNFC Covered basic criteria
Modified Yu criterion MC, Pisarenko-Lebedev, twin–shear strength, Tresca, Schmidt-Ishlinsky, and Sokolovsky criteria
Podgórski criterion Ivlev, Mariotte, Tresca, and von Mises criteria
Modified Altenbach-Zolochevsky
criterion Ivlev, Mariotte, Tresca, Schmidt-Ishlinsky, and Sokolovsky criteria

Universal criterion of trigonal
symmetry Ivlev, Mariotte, Tresca, Schmidt-Ishlinsky, Sokolovsky, and von Mises criteria

Universal criterion of hexagonal
symmetry

Ivlev, Mariotte, Tresca, Schmidt-Ishlinsky, Sokolovsky, Shlinsky-Ivlev, Rosendahl 1, Rosendahl 2,
and von Mises criteria
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3. Research status of generalized nonlinear 3D
HB criteria

Over the past 40 years, numerous scholars have modified
and improved the HB criterion to form a relatively complete
theoretical  system.  This  criterion  is  widely  used  in  rock
mechanics and engineering and can reflect the inherent non-
linear failure characteristics of rock and rock mass. This sec-
tion systematically introduces some early nonlinear empiric-
al, HB, and modified 3D HB criteria. 

3.1. Early two-dimensional (2D) nonlinear empirical cri-
teria

Many scholars have proposed various nonlinear empirical
criteria to study the triaxial failure characteristics of rock ma-
terials. The early nonlinear empirical criteria are divided into
three categories (Table 5 [86–94]). It is found that they do not
consider the influence of IPS.

Among  the  early  nonlinear  empirical  criteria,  Hoek  and
Brown [93,95] first highlighted that the HB criterion, with a
long history, is the most studied and widely used. This sec-
tion discusses the 2D HB criterion.

Based on the nonlinear Griffith criterion [96] and the res-
ults of a wide range of triaxial tests on intact rock samples,
Hoek and Brown [93,95] proposed the HB criterion for the
first time, expressed as

σ1 = σ3+σc

(
mi
σ3

σc
+1

)0.5

(22)

where σ1 and σ3 are the major and minor principal stresses, re-
spectively, σc is the uniaxial compression strength of the in-
tact rock, and mi is the material constant.

Later, Hoek [97] and Hoek et al. [98] proposed the gener-
alized  HB (GHB)  criterion  to  estimate  the  strength  of  rock
mass, expressed as

 

Table 4.    Other types of GNFCs

Presenter Commentary on the criterion

Ehlers [71] Can describe the strength behavior of brittle and granular materials; the deviatoric plane shape is close to a triangle
with a rounded corner (Fig. 12(a))

Li and Tang [72] Can reflect the cross-effect of a single principal stress on the sliding surface; however, it does not degenerate into
MN and LD criteria (Fig. 12(b))

Shi et al. [73] The failure envelope of the criterion is between the LD and MN criteria and is not circumscribed to the MC
criterion; for coarser rockfill materials, the applicability of the criterion must be further verified

Liang and Li [74] The failure envelope of the criterion satisfies the smoothness and convexity requirements but cannot degenerate
into other classical criteria

Zhen and Li [75] The 3D nonlinear failure criterion (3DNFC) can characterize the anisotropy of rock strength, and its deviatoric
plane shape is similar to that of the MC and HB criteria

Gao et al. [76] The deviatoric plane shape of the criterion cannot fully meet the convexity and smoothness requirements
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Table 5.    Early 2D nonlinear empirical criteria

Presenter of criterion Description of criterion type Commentary on the criterion
Murrell [86], Bieniawski [87], Yudhbir
et al. [88], and Sheorey et al. [89]

Category I, the major principal stress σ1 is a
function of the minor principal stress σ3.

The early 2D nonlinear empirical
criteria are simple in form, where the
material parameters are determined by
the statistical curve fitting of uniaxial
compressive and tensile strengths and
test results. However, they fail to
consider the influence of IPS on rock
strength.

Hobbs [90] and Ramamurthy and Arora [91]
Category II, the major principal shear stress τ13
= (σ1 – σ3)/2 is a function of the minor
principal stress σ3.

Franklin [92], Hoek and Brown [93], and
Yoshida et al. [94]

Category III, the major shear stress τ13 =
(σ1 – σ3)/2 is a function of the normal stress
σ13 = (σ1 + σ3)/2.
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σ1 = σ3+σc

(
mb
σ3

σc
+ s

)a

(23)

where mb, s, and a are the rock mass material constants. They
can  be  expressed  by  the  geological  strength  index  and  the
factor D of the disturbance degree due to blast damage and
stress relaxation [99].

Fig.  13 [97–98]  shows  that  the  failure  envelope  of  the
GHB  criterion  on  the  deviatoric  plane  is  an  irregular
hexagon. When θσ = 0° and θσ = 60°, the failure envelope of
the criterion does not meet the smoothness requirement, and
the influence of  the IPS is  not  considered.  The true triaxial
test of rock shows [100–102] that the IPS significantly influ-
ences rock strength. 

3.2. Improved HB criteria based on the deviatoric plane
function

Since the HB criterion does not meet the smoothness re-
quirement, some scholars have retained the nonlinear charac-
teristics of the original meridian plane and adopted a smooth
and convex deviatoric plane function to modify the HB cri-
terion (Table 6 [103–106]). The modified 3D HB criteria are
expressed as√

J2 =
−miσc+

√
m2

iσ
2
c +12miσcI1+36σ2

c

6
√

3
g (θσ) (24)

These 3D HB criteria  retain the nonlinear  characteristics
of the original meridian plane of the HB criterion and solve
the smoothness requirement problem. It is worth mentioning
that,  at  the  corners,  the  criterion  proposed  by  Yang et al.
[105] does not fully meet the smoothness requirement (Fig.
14(a)).  The  envelope  shape  (Fig.  14(b))  of  the  deviatoric
plane function of the criterion proposed by Li [106] can be

determined based on the material constant mi and test data. 

3.3. Generalized nonlinear 3D HB criteria established by
the construction method

The generalized nonlinear 3D HB criterion established by
the construction method can be expressed as

1
mbσ

1/a−1
c

( √
3J2

)1/a
+

1
√

3
D (θσ)

√
J2−

sσc

mb
− I1

3
= 0 (25)

where D(θσ) is a function of θσ.
The existing 3D HB criteria for this category are shown in

Table 7 [107–118]. The GZZ and new GZZ criteria can de-
generate into HB under triaxial compression and tensile con-
ditions.  The 3D HB criteria  constructed by Zhang and Zhu
[108],  Zhang [109],  Jiang et al.  [110],  Jiang and Xie [111],
Jiang and Zhao [112], and Cai et al. [115–118] are challen-
ging  to  meet  the  smoothness  and  convexity  requirements.
The new criterion C is similar to the new GZZ criterion. Fur-
thermore, the Pan–Hudson criterion does not consider the in-
fluence of Lode angle θσ. The rock strengths predicted by this
criterion are the same under triaxial compression and tension;
therefore,  the tensile strength of rock material  is overestim-
ated. Due to space limitations, this paper only lists the deviat-
oric plane shapes of the criteria proposed by Zhang [109] and
Jiang [113] (see Fig. 15).

It  is  worth  mentioning  that  Chen et al.  [119–120]  pro-
posed a modified GZZ (MGZZ) criterion based on the aver-
age effective stress. The criterion satisfies the convexity re-
quirement and has an explicit expression. It can be conveni-
ently  used  for  theoretical  and  numerical  analysis.  Further-
more,  it  can degenerate  into  the HB criterion under  triaxial
compression and tension. 
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Table 6.    Modified HB criteria based on the deviatoric plane function

Presenter Characteristics of the deviatoric plane function
Lee et al. [103], The shape of the function changes continuously from triangle to circle, and the failure envelope meets the

convexity requirement. Only when 0° < θσ < 30°, the curvature of the envelope shows a slight difference.Zhang et al. [104]
Yang et al. [105] The shape of the function changes continuously from MC to DP criteria (Fig. 14(a)).

Li [106] The shape of the function changes continuously from a curved triangle to a circle, meeting the requirements of
smoothness and convexity (Fig. 14(b)).
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3.4. Improvement  of  the  HB  criterion  by  introducing
principal stress weight combination

This  section  addresses  the  improvement  of  the  HB  cri-
terion  based  on  the  weight  combination  of  the  IPS σ2 and
minor principal stress σ3 (Table 8 [121–127]). This improved
HB  criterion  shares  the  same  material  constants  with  the
GHB  criterion,  inheriting  the  advantages  of  the  GHB  cri-
terion  parameters.  However,  they  do  not  meet  the  smo-
othness requirement and are inconvenient for numerical cal-
culation. Due to space limitations, this paper only lists the de-
viatoric  plane  shapes  of  the  criteria  proposed  by  Li et  al.
[123] and Gao et al. [126] (see Fig. 16). 

3.5. Improved HB criterion based on other theories (cri-
teria)
 

3.5.1. Combination of the HB criterion with other criteria
Yu et al. [128] proposed a GNFC (Fig. 17(a)) for rock ma-

terials by combining the unified strength theory with the HB
criterion, which can be extended to rock mass strength. Priest
[129] proposed a comprehensive criterion combining the DP
and HB criteria. Nevertheless, the criterion has challenges in
reflecting the strength difference of rock under triaxial com-
pression and tension [130]. Benz et al. [131–132] presented

an  improved  HB  criterion  influenced  by  the  shape  of  the
Lade, Matsuoka, and Nakai deviatoric plane function. Huang
et al.  [133] combined the HB criterion with the GNFC and
developed a modified HB criterion.

Vicente  da  Silva  and  Antão  [134]  proposed  a  new
HB–MN failure criterion (Fig. 17(b)), which extends the 2D
HB criterion using the failure envelope of the MN criterion
on  the  deviatoric  plane.  However,  this  criterion  makes  it
challenging to separate the stress invariants. Based on the 2D
MC and HB criteria, Schwartzkopff et al. [135] set up an HB
criterion under general stress conditions, of which the failure
envelope meets the smoothness and convexity requirements
on the deviatoric plane,  conductive to the development and
application of numerical simulation software. 

3.5.2. Combination of the HB criterion with other theories
Based  on  the  linear  elastic  fracture  theory,  Zuo et al.

[136–137] derived the HB criterion using a 3D crack model.
They found, for the first time, that the constant mi in the HB
criterion has physical significance; it is related to the ratio of
uniaxial compressive–tensile strengths.

Based  on  the  fracture  mechanics  theory  and  the  wing
crack  model,  Wang et al.  [138]  derived  a  3D  strength  cri-
terion for hard rocks. Their research shows that when σ2 = σ3,
this  criterion  can  degenerate  into  the  criterion  proposed  by
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Table 7.    Modified 3D HB criteria under different functions D(θσ)

Presenter D(θσ) Name

Pan and Hudson [107] 1.5 Pan–Hudson
criterion

Zhang and Zhu [108]; Zhang [109] (3+2sinθσ)/2 3−2cos(π/3+ θσ)]/2or [ Zhang–Zhu criterion and
GZZ criterion (Fig. 15(a))

Jiang et al. [110] 3−2cosθσ New criterion A
Jiang et al. [110] [5−2cos(2θσ )]/3 New criterion B
Jiang and Xie [111]; Jiang et al. [110] 3− cos(3θσ)]/2[ New criterion C
Jiang and Zhao [112] 2cos[(π/3)− θσ] New criterion D

Jiang [113] cos
[
1
3

arccos(kcos(3θσ))
]
/cos

[
1
3

arccos(k)
]

New criterion E (Fig. 15(b))

Jiang [114] 1.618–1.691
Cai et al. [115–118] [3+ sin(3θσ)]/2 New GZZ criterion
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Zuo et al. [136].  However,  the  physical  meanings  and  de-
termination methods of the two additional parameters in this
criterion  need  further  verification.  Furthermore,  Zhou et al.
[139] proposed a new 3D GNFC for rock materials based on
the micromechanics method. 

3.6. Improved HB criterion based on rock anisotropy or
laboratory tests

The HB criterion  is  widely  used for  the  strength  predic-
tion of rocks and rock masses but is less applicable to jointed
rocks  with  significant  anisotropy.  Therefore,  Saroglou  and
Tsimbaos [140] modified the HB criterion by introducing a
new parameter, kβ, to describe the influence of rock strength

anisotropy. Given the effects of anisotropy and hydration on
the  strength  of  unsaturated  shale,  Zhang et al.  [141]  pro-
posed a modified HB criterion.

Subsequently,  some  scholars  have  modified  the  HB  cri-
terion  based  on  laboratory  tests  [142–143].  For  example,
Peng  and  Cai  [143]  proposed  an  improved  HB  criterion
based on the residual strength of rock. Some HB criteria re-
vised by many scholars are not listed due to space limitations.

The generalized nonlinear 3D HB criterion can reflect the
inherent  nonlinear  failure  characteristics  of  rock  and  rock
mass, introducing a new way to study rock mass strength. In
the past 40 years, at least 30 expressions of the HB criterion
have  come  into  being.  Until  now,  scholars  have  constantly
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Table 8.    Improved HB criteria based on the weight combination of σ2 and σ3

Presenter Improved method Commentary on the criterion

Singh et al. [121] The minimum principal stress σ3 is replaced by (σ2 + σ3)/2.

When I1 = 0 MPa, the envelope shape of the Singh
criterion is circular, and as the hydrostatic stress
increases, the envelope shape on the deviatoric plane
gradually transits from a circle to a curved triangle.
The criterion envelope under triaxial compression
does not meet the smoothness requirement.

Priest [122]
σ′3HB = ω1σ

′
2+ (1−ω1)σ′3 ω1

σ′2 σ′3 σ′3HB

, where is a weighting factor in
the range of 0–1. and are the effective stresses. is
the minimum 2D HB criterion effective stress at failure.

The Priest criterion (i.e., the simplified Priest
criterion) cannot degenerate into the HB criterion and
does not meet the smoothness requirement.

Li et al. [123]

σ3 can be replaced by the weighted average of σ2 and σ3, i.e.,
(σ1 + b0σ2)/(b0 + 1) in the low σ2 range, whereas σ1 can be
replaced by the weighted average of σ1 and σ2, i.e., (σ1 +
b0σ2)/(b0 + 1) in the high σ2 range, where b0 is the shape
factor of the failure envelope varying in the range of 0–1.

The proposed criterion inherits the advantages of the
HB criterion and has a straightforward mathematical
expression. However, the envelope on the deviatoric
plane is not smooth (Fig. 16(a)) and can introduce
problems of misconvergence or slow convergence in
numerical simulations.

Ma et al. [124] σ3 is replaced by (nσ2 + σ3), where n is the material
parameter in the range of 0–0.5.

The proposed criterion can degenerate into the HB
criterion but does not meet the smoothness
requirement.

Que et al. [125] σ3 is replaced by (n0σ2 + σ3)/(n + 1), where n0 is the stress
weighting factor, ranging from 0 to 1.

When σ2 = σ3, the proposed 3D version is
automatically converted to the GHB criterion, which
does not meet the smoothness requirement.

Gao et al. [126] σ3 is replaced by [α1(σ2 − σ3) + 2σ3]/2, where α1 is a
parameter related to IPS, varying in 0–1.

The lower bound of the proposed criterion is the HB
criterion, and the upper bound is the Singh criterion.
This criterion can better reflect the influence of IPS
under a complex stress state; however, the failure
envelope on the deviatoric plane does not meet the
smoothness requirement (Fig. 16(b)).

Shi et al. [127]
To enhance the IPS effect on rock strength, (β2σ2 + σ3)/
(1 + β2) is used instead of σ3. For a weakening effect, (β2σ2 +
σ1)/(1 + β2) is used instead of σ1, where β2 is the IPS
coefficient.

The proposed criterion inherits the advantages of the
HB criterion and can well describe the influence of
IPS on rock strength.
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submitted  various  expressions.  Among  them  are  many  in-
novative studies, and some have made breakthroughs in the-
ory. However, most modified HB criteria focus on intact rock
strength.  However,  for  the study of  rock mass strength,  the
surrounding  rock  classification  system  is  generally  used  to
evaluate the rock mass quality, the rock mass parameters are
obtained based on empirical methods, and then the rock mass
strength is determined. Furthermore, in the research of rock
mass parameters,  although the digital in-situ values of  rock
mass parameters have been preliminarily realized, rock mass
mechanics tests at an engineering scale are challenging, and
the strength construction of in-situ rock mass in underground
engineering is difficult to solve effectively. 

4. Research  progress  of  the  GNFCs  in  the  re-
cent five years

Since 2017, the authors have conducted collaborative re-
search on GNFCs and made significant progress. In this sec-
tion, two deviatoric plane functions proposed by the authors

will be systematically introduced, and then a class of GNFCs
based on the two functions (with the meridional plane func-
tion being characterized by a simple power function) will be
emphatically introduced. The function expression is√

J2 = Nf pa

(
I1+δt

pa

)n1

g (θσ) (26)

where Nf reflects the influence of friction factors on the fail-
ure envelope (the friction characteristics). δt reflects  the tri-
axial  tensile  strength  of  the  material. n1 is  the  hydrostatic
stress effect index, and its range is [0.5, 1], reflecting the in-
fluence degree of hydrostatic stress.
 

4.1. MNGNF, MCNUF, and LDNUF criteria
 

4.1.1. MNGNF criterion
Based  on  the  deviatoric  plane  function  of  the  MN  cri-

terion,  Wu et al.  [144]  and  Zhang  [145]  introduced  a  new
strength parameter and proposed a new two-parameter devi-
atoric plane function, expressed as
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g (θσ) =
sin

(
π
3
α2−

1
3

sin−1A1

)
sin

{
π
3
α2+

1
3

sin−1 [A1sin(3θσ)]
} (27)

where A1,  ranging in [1, 1.5],  is the function of the first  in-
variant of the stress tensor I1 or the internal friction angle φ.
The parameter α2, ranging in [0, 1], primarily controls K.

Research  shows  that  the  new  two-parameter  deviatoric
plane function can realize the deviatoric plane shape of many
classical criteria (Fig. 18 [144–145]), such as the DP, Tresca,
MC, LD, MN, and Ottosen criteria, and meet the smoothness
and convexity requirements. 

4.1.2. MCNUF and LDNUF criteria
Wang et al. [146] introduced two parameters to extend the

deviatoric plane function of the LD criterion and proposed a
novel three-parameter deviatoric plane function, expressed as

g (θσ) =
−sin

(
π
6
α3+β3+

1
3

cos−1γ3

)
sin

{
π
6
α3+

1
3

cos−1
[
γ3cos(3θσ)

]} (28)

where α3 controls  the  parameter K,  ranging  in  [1,  2]. β3

primarily controls the shape and size of the deviatoric plane
and  takes  one  of  six  fixed  values  (−π, −π/1.4353, −π/1.5,
π/3.2971, π/3, or π). γ3 is related to the internal friction angle
φ or the first invariant of the stress tensor I1 in the range of
[0, 1].

The  novel  three-parameter  deviatoric  plane  function  can

generate the deviatoric plane shapes of many classical criter-
ia (Fig. 19 [146]), including the Rankine, Tresca, von Mises,
generalized Tresca, MC, DP, MN, LD, and Ottosen criteria.
Moreover,  it  can  cover  the  shapes  of  the  deviatoric  plane
functions proposed by Bigoni and Piccolroaz [60], Qiu et al.
[65], and Wu et al. [144] and satisfy the smoothness and con-
vexity requirements.

This paper only takes the three-parameter deviatoric plane
function  (Eq.  (28))  as  an  example  for  a  brief  analysis. Fig.
19(e) shows that the function is equivalent to the MC deviat-
oric plane function when α3 ∈ [1, 2], β3 = π or −π, and γ3 =
1.0. Fig. 19(i) shows that it is equivalent to the Ottosen devi-
atoric plane function when γ3∈ [0, 1], α3 = 1.0, β3 = π/3, or
−π/1.5, and Fig. 19(f)–(h), show that its shape degenerates in-
to a DP circle when γ3 = 0.

When α3 ∈ [1, 2], the deviatoric plane shapes of the su-
perposition of Fig. 19(a) and (e) are equivalent to the shape of
Fig. 10(a) and those of Fig. 19(b) and (e) are equivalent to the
shape  of Fig.  10(b).  When γ3 ∈ [0,  1],  Fig.  19(f)  and  (g)
shows that the deviatoric plane shapes are equivalent to those
of Fig.  10(c)  and  (d),  respectively,  whereas  those  of Fig.
19(e) and (f) are equivalent to those of Fig. 11(a) and (b), re-
spectively. Fig.  19(c)–(h)  and Fig.  18(a)–(f)  show  that  the
three-parameter deviatoric plane function (Eq. (28)) is equi-
valent to the two-parameter one (Eq. (27)).

The studies above find that the deviatoric plane function
mentioned by Bigoni and Piccolroaz [60], Qiu et al. [65], and
Wu et al. [144] is only a unique case of the three-parameter
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deviatoric plane function.
For  the  convenience  of  distinction,  the  3D  generalized

nonlinear failure criterion constructed from Eq. (27) is named
the MNGNF criterion. Based on Eq. (28), the 3D nonlinear
unified failure (NUF) criteria constructed with parameter γ3

using  the  basic  parameters  of  the  MC  and  LD  criteria  are
named the MCNUF and LDNUF criteria, respectively.

Research shows that  the MNGNF criterion can degener-
ate  into  several  classical  criteria,  including  the  Tresca,  cir-
cumscribed DP, MC, LD, and MN criteria. The MCNUF (or
LDNUF) criterion can degenerate into the Rankine, Tresca,
von Mises,  generalized Tresca,  MC, DP, MN, LD, and Ot-
tosen  criteria.  The  MCNUF  (or  LDNUF)  criterion  can  de-
generate into the criteria presented by Bigoni and Piccolroaz
[60] and Qiu et al. [65] when the corresponding transforma-

tion  is  performed  on  the  meridian  plane  function.  Further-
more, the proposed MCNUF (or LDNUF) criterion is gener-
alized.

By  applying  the  proposed  MNGNF,  MCNUF,  and  LD-
NUF criteria to four rock materials, i.e., Yamaguchi marble,
Laxiwa  granite,  Tien–Liao  mudstone,  and  Castlegate  sand-
stone, it  was found that the three criteria have good predic-
tion  performances,  with  predictive  errors  of  2.3006%–
3.8013%,  2.3500%–5.4100%,  and  2.4200%–10.4834%,  re-
spectively. The proposed criteria can describe the hydrostatic
stress, IPS effect, hydrostatic stress, and IPS coupling effect
for various rock materials quite well [146]. 

4.2. MNHB and NGHB criteria

Wu et al. [147] and Zhang et al. [148] proposed a modi-
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failure criterion for rock materials, J.X. Wang, S.C. Wu, X.K. Chang, et al., Copyright 2023.
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fied 3D HB criterion (the MNHB criterion) by revising the
HB  criterion  by  the  new  two-parameter  deviatoric  plane
function (Eq. (27)) [144], which has the same expression as
Eq.  (24).  The  MNHB  criterion  meets  the  smoothness  and
convexity requirements. It retains the nonlinear characterist-
ics  of  the  original  meridian  plane  in  the  HB  criterion.
However, it can only be applied to intact rock strength stud-
ies and cannot degenerate into the HB criterion.

Later, inspired by Eqs. (25) and (28), Wang et al. [17] in-
troduced a new NGHB criterion, which has the same expres-
sion as Eq. (25), with the function D(θσ) being expressed as

D (θσ) =
sin1/n2

{
π
6
+

1
3

arccos
[
β4cos(3θσ)

]}
sin

[
π
6
+

1
3

arccos(β4)
] (29)

where n2 and β4 are the shape factors of the deviatoric plane,
which primarily control the shape of the deviatoric plane of
the NGHB criterion under triaxial tension and compression,
respectively, with the ranges of β4 ∈ [0, 1] and n2 ∈ [1, 4].

Fig.  20 shows  the  failure  envelope  characteristics  of  the
NGHB criterion  on  the  deviatoric  plane  [17].  The  criterion
unifies  parts  of  the  modified  HB  criteria  into  the  same
strength  theoretical  framework,  such  as  Jiang  and  Zhao’s
[112], Jiang’s [113], the HB criterion under triaxial compres-
sion–tension,  and  the  Priest  criterion  [129]  under  triaxial
compression.  This  criterion  lays  the  foundation  for  further
unifying the nonlinear 3D HB criterion.

The NGHB criterion can be applied to rock mass strength
studies  and  is  a  generalized  nonlinear  3D  HB  rock  mass
strength  criterion  in  the  true  sense.  It  has  better  predic-
tion  performance  than  those  proposed  by  Jiang  and  Zhao
[112], Jiang [113], and Cai et al. [115]. The strength predic-
tion errors for the six rock types and two in situ rock mas-
ses are 2.0724%–3.5091% and 1.0144%–3.2321%, respect-
ively. This criterion shares the same parameter system with
the  GHB  criterion  and  fully  inherits  the  parameter  advant-
ages. 

5. Conclusions and outlook

(1) Intercrossing and fusing the GNST with metaheuristic
algorithms and establishing an open and shared information

service platform using modern media technology are hot top-
ics and will be the future research directions.

With its continuous improvement, modification, and per-
fection, the nonlinear strength theory has been unified, mak-
ing each single nonlinear strength theory applicable to specif-
ic  materials  become  the  GNSTs  applicable  to  all  materials
and  forming  a  complete  strength  theory  system.  However,
most  GNSTs  are  based  on  classical  criteria  or  empirical
methods  to  determine  material  parameters.  The  deviatoric
plane shape of the GNST cannot show all smooth and con-
vex  curves  well.  Therefore,  optimizing  material  parameters
based on metaheuristic algorithms will be the research direc-
tion of geomaterial strength.

(2) Constructing a set of strength index systems of in-situ
engineering  rock  mass  considering  the  directionality  of  the
rock mass structural plane, in-situ regionality, and size effect
to obtain dynamic in-situ rock mass parameters quickly, con-
veniently, and accurately will become the research direction
for the basic theoretical rock mechanics.

It is required to research intelligent equipment for the effi-
cient acquisition of in-situ rock mass parameters to develop
portable intelligent collection equipment for in-situ rock mass
data  of  underground  engineering,  to  process  real-time  data
and  topology  structure–recognition  algorithms,  to  construct
an evaluation index system for the rock mass quality of un-
derground engineering based on multisource information fu-
sion under complex occurrence conditions, to acquire the dy-
namic in-situ rock mass parameters quickly,  easily,  and ac-
curately using the new generation communication networks
(such  as  the  6G  network,  Internet  of  Things,  and  mobile
communication),  and  modern  information  means  (such  as
cloud computing), and finally to realize standardization and
intellectualization.

(3)  Proposing  digital,  informative,  and  intelligent in-situ
strength  construction  methods  for  underground  engineering
rock is essential for solving the bottleneck problem.

Regarding the in-situ engineering rock mass strength un-
der  complex  occurrence  conditions,  it  is  urgent  to  develop
large-scale  3D  numerical  software  to  seamlessly  inte-
grate  measures  across  sample  scale, in-situ test  scale,  and
engineering  scale.  This  software  should  coordinate  the-
ory,  test,  simulation,  and  other  methods  to  establish  a  new
generation  of  digital,  informative,  and  intelligent  construc-
tion methods for assessing in-situ rock mass strength in un-
derground  engineering.  Such  practice  would  become  a  re-
search idea and solution, break through the key scientific bot-
tleneck  problems  in  underground  engineering,  and  eventu-
ally realize the construction of in-situ rock mass strength in
full intelligence. 
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