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Abstract: Laser powder bed fusion (LPBF) is a widely recognized additive manufacturing technology that can fabricate complex com-
ponents rapidly through layer-by-layer formation. However, there is a paucity of research on the effect of laser scanning speed on the cel-
lular microstructure and mechanical properties of martensitic stainless steel. This study systematically investigated the influence of laser
scanning  speed  on  the  cellular  microstructure  and  mechanical  properties  of  a  developed  Fe11Cr8Ni5Co3Mo martensitic  stainless  steel
produced by LPBF. The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change
in the phase fraction, but it reduces the average size of the cellular microstructure from 0.60 to 0.35 μm. The scanning speeds of 400 and
1000 mm/s both had adverse effects on performances of sample, resulting in inadequate fusion and keyhole defects respectively. The op-
timal  scanning  speed  for  fabricating  samples  was  determined  to  be  800  mm/s,  which  obtained  the  highest  room  temperature  tensile
strength and elongation, with the ultimate tensile strength measured at (1088.3 ± 2.0) MPa and the elongation of (16.76 ± 0.10)%. Fur-
thermore, the mechanism of the evolution of surface morphology, defects, and energy input were clarified, and the relationship between
cellular microstructure size and mechanical properties was also established.

Keywords: laser powder bed fusion; martensitic stainless steel; cellular microstructure; mechanical properties; strengthening mechanism

  

1. Introduction

Metal  additive  manufacturing,  with  its  rapid  capabilities
and  high  design  flexibility [1–2],  is  suitable  for  the  direct
shaping of metals with complex geometrical structures [3–4]
and is widely used in aerospace, nuclear industry, biomedic-
al,  and  other  fields [3,5–6].  Martensitic  stainless  steel,
renowned for  its  high  strength  and  excellent  weldability,  is
well-suited for additive manufacturing [7], and also demon-
strates superior mechanical strength and corrosion resistance
[8]. The Fe–Cr–Ni–Co–Mo alloy representing a novel, cost-
effective, ultra-high strength, and high toughness martensitic
stainless  steel  has  attracted  widespread  attention  from  re-
searchers [9–11].

In  additive  manufacturing,  the  laser  powder  bed  fusion
(LPBF) is widely recognized for its capability to fabricate in-
tricate  parts [12–13].  Although  the  geometric  control  of
LPBF-produced components is generally well-managed, the
optimization of their microstructure and mechanical proper-

ties  remains  a  challenging problem [14–15].  In  fact,  due to
the  complex thermal  history induced by LPBF process,  the
microstructure and mechanical behavior depend on the heat
input [16–18]. The heat input is affected by various forming
process parameters, including scanning speed [12–19], laser
power [20–21], hatch space [15], scanning mode [22], etc. In
other words, processing parameters have a significant influ-
ence on the microstructure and mechanical properties of ad-
ditively manufactured alloys.

Over  the  past  few  years,  extensive  researches  have  fo-
cused  on  the  interplay  between  process  parameters,  micro-
structure, and properties of LPBF stainless steels. Liu et al.
[23] analyzed  the  impact  of  scanning  speed  on  the  micro-
structure and mechanical properties of 316L austenitic stain-
less steel and revealed that high scanning speed (1000 mm/s)
results  in  a  high  proportion  of  low-angle  grain  boundaries
and refined grains, enhancing the maximum tensile strength.
Conversely,  low scanning  speeds  (800  mm/s)  minimize  re-
sidual pores and melt  pool boundaries,  achieving a maxim- 
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um elongation up to 55% [23]. By optimizing the scanning
speed, Nigon et al. [24] successfully produced 2205 austenitic–
ferritic  stainless  steel  samples  with  a  relative  density  of
98.6% using the LPBF process. Furthermore, Jiang et al. [25]
studied the effect of LPBF laser scanning speed on the form-
ing performance, microstructural evolution, wear, and corro-
sion resistance of ferritic stainless steel, discovering that in-
creased  scanning  speed  induce  the  anisotropic  microstruc-
tures enriched with low-angle grain boundaries and α-Fe. The
microhardness was measured to be HV 812, and the specific
wear rate was found to be 1.99 × 10−6 mm3/(N·m). Similarly,
it  was  demonstrated  that  the  microstructure  of  17-4  PH
martensitic stainless steel produced by LPBF process can be
tailored  to  improve  its  mechanical  properties  by  adjusting
laser power, scanning speed, and hatch distance [26–27].

From the brief overview of the literature, it is evident that
most  of  the  research  has  focused  on  the  effects  of  process
parameters  on  the  microstructure  and  properties  of  LPBF-
316L austenitic stainless steel and LPBF martensitic precipit-
ation-hardened stainless steel. While additional studies have
examined  17-4PH  martensitic  stainless  steel [28–29] and
18Ni300 martensitic stainless steel [30–31], there is a paucity
of research on the effect of scanning speed on the cellular mi-
crostructure  and  mechanical  properties  of  martensitic  stain-
less steel produced via LPBF. Consequently, this study is de-
signed to explore the phase and cellular microstructural char-
acteristics  of  Fe11Cr8Ni5Co3Mo  martensitic  stainless  steel
produced by LPBF under various laser scanning speeds. The
Fe11Cr8Ni5Co3Mo martensitic stainless steel, developed by
our team, is a cost-effective material with superior properties

[9–11]. Furthermore, tensile performance tests were conduc-
ted on the as-fabricated specimens at room temperature. The
objective  of  this  research  was  to  establish  the  relationship
between laser scanning speed, cellular microstructure, phase
evolution, and mechanical properties of Fe11Cr8Ni5Co3Mo
steel produced via LPBF processing. 

2. Experimental 

2.1. Raw material

In this study, the low-carbon high-alloy martensitic stain-
less  steel  powder  with  a  nominal  composition  of
Fe11Cr8Ni5Co3Mo was used as  raw material.  The powder
was produced through vacuum plasma rotating electrode at-
omization  by  Zhonghang  Maite  Powder  Manufacturer
(China). The chemical composition of the powder was ana-
lyzed using the Shimadzu EMIA-820A carbon-sulfur analyz-
er,  the  full  spectrum  direct-reading  inductively  coupled
plasma  emission  spectrometer,  and  TCH600  oxygen-nitro-
gen-hydrogen  analyzer.  The  results  of  powder  composition
are presented in Table 1. The morphology of the powder is
shown in Fig. 1(a), while the particle size distribution is illus-
trated in Fig.  1(b),  most  of  the particles  fall  within the dia-
meters of 16.3–58.0 μm.
 
 

Table  1.     Chemical  composition  of  the  martensitic  stainless
steel wt%

Fe Cr Ni Mo Co Mn V Al Si C
Bal. 11.3 8.0 3.0 4.37 0.26 0.14 0.20 0.22 0.018
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Fig. 1.    (a) Powder morphology and (b) particle size distribution of raw material (D10, D50, and D90 represent the particle sizes when
the cumulative particle size distribution reaches 10vol%, 50vol%, and 90vol% respectively).
 
 

2.2. Processing parameters

In this study, the martensitic stainless steel were produced
via  LPBF  in  an  SLM125HL  system  (Germany),  equipped
with  Yb-Fiber  laser.  The  printing  atmosphere  was  Ar,  the
oxygen content  was controlled below 0.12wt%, and a  rota-
tion angle of 67° between the neighboring layers was chosen
to be the scanning strategy. The scanning speed was varied
from  400  to  1000  mm/s.  The  substrate  was  made  of  316L
stainless  steel,  and  the  preheating  temperature  of  the  sub-
strate was 200°C. The volumetric energy density E with the

unit of J/mm3 was calculated as follows [15,32–33]:

E =
P

v ·h ·d (1)

where P, v, h,  and d represent  the  laser  power  (W),  scan
speed (mm/s), hatch distance (μm), and layer thickness (μm),
respectively. The detailed processing parameters and energy
density are listed in Table 2. 

2.3. Characterizations

Basic observations of the morphology of the FeCrNiCo-
Mo martensitic stainless steel melt pool were conducted us-
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ing an optical microscope (DM4000, Leika). Scanning elec-
tron  microscopy  (SEM,  GeminiSEM500,  Zeiss)  and  trans-
mission electron microscopy (TEM, FEI Talos F200X) were
used  to  observe  the  powder  and  the  microstructure  of  the
LPBF-FeCrNiCoMo martensitic stainless steel, including the
fracture  morphology  of  the  tensile  specimens.  The  phase
constitution  and  crystal  structure  of  the  sample  was  per-
formed  using  an  Ultima  IV  X-ray  diffractometer  (XRD,
SmartLab). The XRD operated at a copper target X-ray tube
with a voltage of 40 kV, a current of 40 mA, and a scanning

step size of 0.2°/min.
The  tensile  performance  test  was  based  on  the  ASTM

E8/E8M standard (ISO 6892-1:2009) and followed the GB/T
228-2010  standard.  The  gauge  length  of  tensile  specimens
was 15 mm. The tests were carried out at room temperature
and on an electronic universal testing machine with a stretch-
ing  rate  of  0.5  mm/min.  Engineering  stress–strain  curves
were  obtained  and  further  converted  into  true  stress–strain
curves. Fig. 2 illustrates the schematic diagram of the printed
block and printed tensile specimen.

  
Table 2.    Processing parameter configuration for different samples

Sample Laser power / W Scanning speed / (mm·s−1) Hatch distance / μm Layer thickness / μm Energy density / (J·mm−3)
1 100 400 100 20 125.0
2 100 600 100 20 83.3
3 100 800 100 20 62.5
4 100 1000 100 20 50.0
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Fig. 2.    Schematic illustration of sample: (a) printed block with its scanning strategy; (b) dimensions of the tensile specimen.
  
3. Results 

3.1. Phase analysis

The  XRD  analysis  results  of  FeCrNiCoMo  martensitic
stainless  steel  prints  corresponding  to  different  scanning
speed is shown in Fig. 3.

The phase structure of the as-printed martensitic stainless
steel primarily consists of martensite with a lesser amount of
austenite, as observed from the diffraction peaks. The volume
fraction of  austenite  can be estimated by comparing the in-
tegrated intensities of the (hkl) peaks in the XRD diffracto-
gram using the following formulas [34]:

Vγ+Vα′ = 1 (2)

Vγ = 1.4Iγ/(Iα′ +1.4Iγ) (3)
Vγ Vα′where  and  are the volume fractions of austenite and

Iγ Iα′martensite respectively, and  and  are the peak intensit-
ies  of γ(111)  and α′(110)  respectively  [35–36].  The  calcu-
lated austenite content is approximately 2.5%. From Fig. 3,
varying the scanning speed in the XRD spectra indicates that
there is no significant change in the basic phases. However,
there is a slight shift in the phase peaks under the same crys-
tal plane, which is attributed to the solid solution effect and
lattice distortion that occur during the printing process. 

3.2. Microstructure characterization
 

3.2.1. Metallography
The  macroscopic  morphology  of  the  scanning  track  and

the melt pool of the samples under the laser power of 100 W
and  scaning  speeds  of  400,  600,  800,  and  1000  mm/s  are
shown in Fig. 4.

Fig. 4 depicts a macroscopic melt pool image of the prin-
ted sample under optical microscopy. Through multiple mi-
croscopic observations and over 8 times of dimension meas-
urements,  as  shown  in Fig.  4(a),  at  a  scanning  speed  of
400 mm/s, the melt pool is quite large with a depth of about
(120 ± 10) μm, and it has a considerable number of defects
such  as  lack  of  fusion  porosity.  In Fig.  4(b),  at  a  scanning
speed of 600 mm/s, the melt pool becomes wider and slightly
shallower  with  a  depth  of  about  (80  ±  10)  μm. Fig.  4(c)
shows that the melt pool is more regular with a depth of about
(50 ± 5) μm, and it has the least number of defects and a good
width-to-depth ratio. In Fig. 4(d), the scanning speed is 1000
mm/s, the melt pool is relatively shallow with a depth of (40 ±
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Fig.  3.     XRD patterns  for  FeCrNiCoMo martensitic  stainless
steel printed with different scanning speeds.
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5) μm, and there is some unmelted region in the specimen.
This further verifies that as the scanning speed increases,

the depth of the melt pool decreases and the width-to-depth
ratio gradually increases [21,37]. The phenomonen is due to
that  when  scanning  speed  increases,  the  average  time  that
laser energy acts on the powder material shortens, the input
of laser energy decreases,  and the size of the melt  pool de-
creases accordingly [37]. Consequently, the space range for
grain  growth  also  reduces [38].  As  the  scanning  speed  de-
creases, the depth of the melt pool increases correspondingly,
which could lead to  the evaporation of  elements  within the
melt pool and the formation of porosity. Additionally, mater-
ials within the melt pool may experience splashing and ejec-
tion, contributing to the formation of keyholes and a signific-
ant reduction in density. This also results in balling effect, de-
creasing the compactness and roughening the surface of the
specimen [39–40].

However,  when  the  scanning  speed  is  too  high,  it  may
cause incomplete melting of the powder and induce spheric-
alization, thus leading to poor interlayer bonding. Therefore,
an optimal scanning speed is necessary to control the defects
of LPBF materials. 

3.2.2. Microstructure
Fig. 5 shows the microstructure inside the melt pool paral-

lel to the building direction in images (a), (c), (e), and (g) on
the left, and perpendicular to the building direction in images
(b), (d), (f), and (h) on the right. The columnar grains grow
fully  in  the  direction  parallel  to  building  direction,  and  the
columnar grains grow mainly towards the opposite temperat-
ure gradient direction, growing from the bottom of the melt
pool  to  the  center  of  the  melt  pool.  The  microstructure  de-
pends on the temperature gradient (G) and solidification rate
(R) [41].  The G/R determines the supercooling of  the com-
position before the melt pool solidifies [42]. Different areas
inside the melt pool have different G/R values, leading to cer-

tain differences in the internal microstructure [43]. The tem-
perature gradient at the edge of the melt pool is higher than
that at the center. Subject to rapid re-heating and re-cooling
cycles,  a  large  number  of  quenched  equiaxed  grains  are
formed [11,44].

The cellular microstructure diameter of the plane perpen-
dicular to the building direction decreases gradually with the
increase of scanning speed, and the total number of cellular
microstructures in the same area also increases. According to
the microstructure characterization from multiple positions of
specimen,  the  quantity  of  cells  and  average  cellular  micro-
structure size are shown in Table 3. It is obvirous that the av-
erage  cellular  microstructure  size  decreased  with  the  de-
crease of energy density. This is because a smaller melt pool
can transfer heat more quickly with the surrounding area, and
is  conducive  to  the  rapid  nucleation  of  cellular  microstruc-
ture, which in turn makes the average cellular microstructure
size smaller [11]. 

3.2.3. Cellular microstructure
Fig.  6 shows  the  TEM  micrographs  of  LPBF-FeCr-

NiCoMo martensitic stainless steel printed at scanning speed
of 1000 mm/s. The dominant composition of the matrix or-
ganization  is  martensite,  with  minimal  presence  of  residual
austenite  detected [45].  The  mean  width  of  the  martensite
laths is approximately 170 nm, and there are a large number
of  dislocation  entanglements  between  the  martensite  layers
[46].  The  selected  area  diffraction  pattern  (SADP)  in Fig.
6(b) shows it to be martensite. It was proposed that extreme
cooling  can  result  in  a  full  martensitic  transformation  for
LPBF [22],  and  the  rapid  transformation  of  martensite  can
generate many dislocations [47–48]. Studies indicate that the
presence of  residual  austenite is  closely related to the grain
size of the parent austenite grain (PAG) [49]. In the vertical
specimen, the size of the austenite lath is larger than the hori-
zontal PAG size, resulting in less retention of austenite dur-
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ing the cooling process.
In order to identify the composition distribution within the

cellular  structure  in  detail,  it  was  observed with  a  scanning

transmission  electron  microscopy  (STEM)  mode. Fig.  7(a)
shows the bright-field (BF) image of the cellular structure of
printed FeCrNiCoMo with scanning speed of 800 mm/s. The
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Fig. 5.    Microstructure of LPBF-FeCrNiCoMo martensitic stainless steel under different scanning speeds: (a, b) 400 mm/s; (c, d) 600
mm/s; (e, f) 800 mm/s; (g, h) 1000 mm/s (the melt pool parallel to the build direction (BD) and perpendicular to BD are indicated on
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Table 3.    Relationship between scanning speed, energy density, and cellular microstructures

Energy density / (J·mm−3) Scanning speed / (mm·s−1) Average numbers per
view field

Cellular microstructure
size / μm

Cross-sectional area of
cellular microstructure / μm2

125.0 400 120–160 0.60 ± 0.20 1.10 ± 0.05
83.3 600 180–210 0.50 ± 0.20 0.78 ± 0.05
62.5 800 240–300 0.40 ± 0.10 0.50 ± 0.05
50.0 1000 300–350 0.35 ± 0.10 0.38 ± 0.10
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morphology and grain size are consistent with the SEM ob-
servations in Fig. 5(f). Fig. 7(b) is a high-angle annular dark
field  (HAADF)  mode,  where  many  dislocation  entangle-
ments  can be observed near  the cellular  structure [50].  The
research on this martensitic stainless steel has revealed that as
the  cellular  size  decreases,  the  number  of  tangled  disloca-
tions gradually increases [11,51], which is manifested as an
increase in the impediment to dislocations [52]. Fig. 7(c)–(h)
shows the elemental  segregation situation,  with Fe,  Cr,  Co,
Ni,  and  Mn  showing  detectable  segregation.  This  segrega-
tion phenomenon can also be found in other LPBF materials
with cellular structure [52].

  
BF HAADF(a)(a)(a) (b)(b)(b) (c)(c)(c) (d)(d)(d)

(e)(e)(e) (f)(f)(f) (g)(g)(g) (h)(h)(h)

Fe Cr

Co Ni Mn Mo

500 nm 500 nm 500 nm 500 nm

500 nm 500 nm 500 nm 500 nm

Fig. 7.    TEM images of the cellular structure in printed FeCrNiCoMo under scanning speed of 800 mm/s: (a) the cellular structure
and its dislocations under BF mode; (b) the cellular structure and its dislocations under HAADF mode; (c–h) elemental segregation
in the cellular structure.
  
3.3. Mechanical properties

Fig.  8 shows  the  tensile  properties  of  the  LPBF-FeCr-
NiCoMo  martensitic  stainless  steel  under  different  laser
scanning  speeds,  and  the  specific  room-temperature  tensile
mechanical  properties  are  presented  in Table  4. Fig.  8(a)
shows  the  representative  individual  tensile  curves  of  each
sample. Fig. 8(b) shows the average ultimate tensile strength
(UTS) and elongation (EL) of samples, in which each experi-
mental point is the average of five individual tests. As shown
in Table 4 and Fig. 8(b), when the laser power is 100 W, the
YS, UTS, and EL of the samples prepared by LPBF show an
increase tendency with the increase of laser scanning speed
from 400 to 800 mm/s and show a decrease tendency when
scanning speed increase from 800 to 1000 mm/s. Therefore,
sample 3 has the highest yield strength (YS) of (898.0 ± 2.0)
MPa, highest UTS of (1088.3 ± 2.0) MPa, and optimal EL of
(16.76 ± 0.10)%. 

3.4. Fracture morphology

Fig. 9 shows the typical tensile fractures of the specimens

processed with a laser power of 100 W and scanning speeds
of 400, 600, 800, and 1000 mm/s.

Fig. 9(a) shows that when the scanning speed is 400 mm/s,
the fracture surface of the sample exhibits weak ductile frac-
ture,  with  a  large  number  of  pores  and  inclusions  inside
dimples,  and  the  elongation  is  only  (13.91  ±  0.10)%.  In
Fig.  9(b)–(d),  fine  dimple  features  can  be  observed  around
the edges, with larger dimples present in the middle, which
means  that  some  shear  planes  fracture  under  applied  stress
conditions, forming fine dimple-like features. Fig. 9(b) shows
that  the  toughness  of  the  specimen  at  a  scanning  speed  of
600 mm/s is slightly better than that at 400 mm/s, with an in-
crease in the fine fibrous dimples, resulting in an elongation
of (16.34 ± 0.10)% for the sample processed at 600 mm/s. As
shown in Fig. 9(c), at a scanning speed of 800 mm/s, the spe-
cimen  exhibits  superior  toughness,  with  an  elongation  of
(16.76  ±  0.10)%.  The  interior  features  fine  and  uniform
dimples  with  larger  ones  in  the  middle,  and  a  significant
necking is observed. Fig. 9(d) indicates that, compared to the
samples scanned at 800 mm/s, there is a reduction in ductil-
ity–toughness  at  a  scanning  speed  of  1000  mm/s,  with  an
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Fig. 6.    TEM micrographs of LPBF-FeCrNiCoMo martensitic
stainless steel printed at scanning speed of 1000 mm/s: (a) low
magnification;  (b)  high  magnification  (insert  is  the  SADP  of
martensite).
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elongation of (15.63 ± 0.10)%, due to a large number of un-
fused defects inside. 

4. Discussion 

4.1. Relationship between laser energy and defects

According to the scanning speed, the energy heat input of
the laser can be categorized into three types [53], as shown in
Fig. 10. When the laser power is fixed, the scanning speed is
one  of  the  key  processing  parameters  in  laser  processing,
which directly determines the heat input and temperature of
the melt pool.

When the scanning speed is 400 mm/s, the longer the time
spent  on  a  unit  area,  which  is  referred  to  as “high  energy.”
When  the  scanning  speed  is  much  higher  (such  as  1000
mm/s), the time spent on a unit area is shorter, which means

the powder receives “less  energy.” If  the scanning speed is
too high, it will result in the powder not being properly fused.
Lack of fusion defects directly affect the interlayer bonding
strength of the parts, making them more likely to break [54].
Moreover,  these  defects  tend to  have  sharp  edges  that  may
cause stress  concentration.  The tips of  the defects  are often
affected  by  thermal  cycling  in  subsequent  manufacturing
processes, which can induce cracks [55]. When the scanning
speed is 400 mm/s, the internal heat of the melt pool cannot
be  dissipated  in  time,  which  can lead  to  the  evaporation  of
elements inside the melt pool and the formation of keyholes
[56]. Therefore, gas pores and voids are generated. Pore de-
fects have a negative impact on the tensile properties of ma-
terials [57–58]. When the scanning speed is appropriate, the
energy density of the parts can be improved, and the defects
of  the  parts  can  be  significantly  reduced.  When  the  laser
power is set at 100 W and the scanning speed is 800 mm/s, it
constitutes  the “optimum  energy,” achieving  an  optimal
melting effect and maintaining excellent print quality. 

4.2. Relationship  between  cellular  structure  and  mech-
anical properties

As shown in Table 4 and Fig. 8, when the laser power is
100 W, with the increase of laser scanning speed from 400 to
800 mm/s, the YS, UTS, and EL of the samples prepared by
LPBF show increase tendency. This can be related to the cel-
lular structure, as previously mentioned, when the laser scan-
ning speed increases, the obtained grain size decreases. The
obtained small cellular structure (about 500 nm), as shown in
Fig. 5, is significant for the ductility and strength of the ma-
terial  under  working  conditions [59].  However,  when  the
scanning  speed  further  increases  to  1000  mm/s,  both  the
strength and elongation of the sample decrease due to the re-
duction  in  heat  input  caused  by  the  excessively  high  scan-
ning  speed [11,50],  and  there  are  more  unmelted  powders
and irregular defects inside the sample [38,60].

Fig. 11 illustrates the fitted relationship between the cellu-
lar structure and mechanical properties at scanning speeds of
400–1000  mm/s. Fig.  11(a)  and  (b)  shows  the  relationship
between the cellular structure size and UTS and EL respect-
ively. In Fig. 11(a), there is a parabolic relationship between
equiaxed grain size and UTS, with a possible extreme value

 

0 3 6 9 12 15 18
0

200

400

600

800

1000

1200

400 mm/s
600 mm/s
800 mm/s
1000 mm/s

T
ru

e 
st

re
ss

 /
 M

P
a

True strain / %

(a)

400 600 800 1000
1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

True stress

True strain

T
ru

e 
st

re
ss

 /
 M

P
a

 T
ru

e 
st

ra
in

 /
 %

1088.3 ± 2

16.76 ± 0.2

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

Scanning speed / (mm∙s−1)

(b)

Fig. 8.    True stress–strain curves of samples at different scanning speed: (a) representative curves and (b) the average value of UTS
and EL.
 

Table  4.     Mechanical  properties  of  samples  under  different
scanning speeds
Scanning speed /
(mm·s−1) YS / MPa UTS / MPa EL / %

400 891.4 ± 1.0 1058.0 ± 2.0 13.91 ± 0.10
600 892.9 ± 2.0 1085.1 ± 2.0 16.34 ± 0.10
800 898.0 ± 2.0 1088.3 ± 2.0 16.76 ± 0.10

1000 776.9 ± 4.0 1073.9 ± 4.0 15.63 ± 0.10
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Fig.  9.     Tensile  fracture  morphology  of  LPBF-FeCrNiCoMo
martensitic stainless steel with scanning speed of (a) 400 mm/s,
(b) 600 mm/s, (c) 800 mm/s, and (d) 1000 mm/s.
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of (1090 ± 5) MPa corresponding to an equiaxed grain size of
0.45 μm. When the cellular size is larger than 0.45 μm, the
UTS shows a decreasing trend. The decrease of UTS may be
due to the increased grain size, decreased dislocation density,
and gradually increased material defects. In Fig. 11(b), there
is also a parabolic relationship between the cellular size and
EL,  with  the  maximum  EL  possibly  being  (16.8  ±  0.2)%,
corresponding to an equiaxed grain size of  0.45 μm. When

the cellular microstructure size of equiaxed grains is greater
than 0.45 μm, the EL shows a decreasing trend because the
increase  in  material  defects.  The  fitted  curve  reflects  the
overall  response  of  the  cellular  microstructure  size  and  de-
fects  on  mechanical  properties,  which  indicates  that  the
mechanical properties of the LPBF steel are more sensitive to
cellular  microstructure size,  consistenting with literature re-
ports [61].
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Fig.  11.     Relationship  between  the  cellular  structure  of  LPBF  martensitic  stainless  steel  and  its  mechanical  properties:  (a)  the
cellular structure size and UTS; (b) the cellular structure size (D) and EL.
  
4.3. Strengthening mechanism

The strengthening of martensitic aging steel relies on mul-
tiple  mechanisms,  and  the  contributions  to  the  YS  of
martensitic stainless steel are generally considered to be four
parts: (1) Martensite phase transformation strengthening σMart;
(2)  Precipitation  strengthening  of  intermetallic  compounds
σP; (3) Solid-solution strengthening σSS; (4) Residual austen-
ite. Since the fraction of residual austenite is small (<1%), it
can be ignored in this LPBF-FeCrNiCoMo martensitic stain-
less steel.

The YS of martensitic stainless steel can be represented by
Eq. (4) [12,62]:

σY = σ0+σSS+σMart+σP (4)
where σ0 is  the lattice friction stress of martensitic stainless
steel [63–65].

Martensitic  phase  transformation  strengthening σMart is
generally controlled by grain boundary area (Hall-Petch ef-

fect) and dislocation density (Taylor equation) [66]. For steel
with a carbon content less than 1wt%, the phase transforma-
tion strengthening formula is Eq. (5) [67].

σMart = 300×D−1/2block+0.25Mμbρ1/2
lath (5)

Dblock

where M = 3 is the Taylor orientation factor [67], b = 0.286
nm is the Burgers vector [66], μ = 71 GPa is the shear modu-
lus [68], Dblock refers to the size of the martensite lath, which
is  generally  0.067  times  the  size  of  austenite [41–42] and
block size  = 1304 nm [63], and ρlath = 2.1 × 1016 m−2 is
the dislocation density under the printing state [11,68].

Solid-solution strengthening σSS is due to the increment of
critical shear stress caused by the existence of substitutional
solute atoms, which is estimated using the Fleischer equation
[69–70]:

σSS =
∑(

β2
i xi

)1/2
(6)

xi

βi

where  is the concentration of the solute element i in the al-
loy, and  is solid-solution strengthening coefficient of ele-
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Fig. 10.    Schematic diagram of the mechanism between LPBF surface morphology, defects, and energy input.
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ment i,  which quantifies the strengthening effect of the ele-
ment, and its values are as shown in Table 5 [69–71]. In the
existing  steels,  Ti  and  Mo  have  the  greatest  solid-solution
strengthening effect, while Cr and V have the smallest effect.
 
 

βiTable 5.    Solid-solution strengthening coefficient 

Ni Ti Mo Co Cr V
334 2628 2143 334 174 134.6

Note: Assuming infinite solid solubility in Fe, and the effects of
Al, Mn, and Si are generally considered negligible [66,72].
 

σP

The  strength  increase  caused  by  precipitation  hardening
 can be attributed to the Orowan bypass or particle cutting

phenomenon [73].  According  to  the  analysis  by  Jin et al.
[74],  if  the  precipitates  are  only  a  few  nanometers,  the
strengthening  mechanism  is  mainly  particle  cutting,  and
Orowan strengthening can be considered. For nano-precipit-

ates at non-coherent interfaces, the Orowan mechanism can
estimate the increase in strength, as shown in Eq. (7) [75–77]:

σP =

(
0.538Gb

√
Vf

X

)
ln

( X
2b

)
(7)

where G is the shear modulus 71 GPa, b is the Burgers vec-
tor, Vf is the volume fraction, and X is the diameter of the pre-
cipitate  particle  in  nm,  taken  to  be  the  equivalent  spherical
diameter.  In  the  as-printed  sample,  no  post-heat  treatment
was  performed.  From our  previous  work [11],  the  precipit-
ates in the printed sample mainly consist  of  Al2O3 particles
formed by some Al elements, with a size of about 100 nm.

σMart σSS σP

By calculating  Eqs.  (5)–(7),  the  contributions  of  various
strengthening mechanisms for yield strength were obtained.
The final calculated results are listed in Table 6, and the con-
tributions  of  the  yield  strength  from  various  strengthening
mechanisms  are  >  > .  The  calculated  yield
strength values are consistent with the experimental values.

  
Table 6.    Comparison of calculated yield strength based on various strengthening mechanisms and experimental yield strength

Calculated strengthening contribution for σY / MPa
Calculated σY / MPa Experimental YS / MPa

σ0 σMart σSS σP

50 479.85 332.48 47.33 909.66 898.0 ± 2.0

  
5. Conclusions

The analysis  of  the microstructure and property research
on martensitic stainless steel fabricated by LPBF under vary-
ing scanning speed has led to the following conclusions.

(1)  The  aspect  ratio  of  the  melt  pool’s  dimensions  in-
creases  with  an  increment  in  scanning  speed.  As  the  scan-
ning  speed  rises  from  400  to  1000  mm/s,  the  depth  of  the
melt pool decreases successively from (120 ± 10) μm to (80 ±
10) μm, (50 ± 5) μm, and (40 ± 5) μm. Observing the macro-
scopic shape of the melt pool reveals a progressively flatter
morphology.

(2)  The  microstructure  of  LPBF-FeCrNiCoMo primarily
consists of nearly full martensite with a characteristic cellu-
lar  structure  typical  of  additive  manufacturing.  The cellular
size in the plane perpendicular to the build direction dimin-
ishes as the scanning speed increases, with an average reduc-
tion from 0.60 to 0.35 μm. Segregation of elements such as
Fe, Cr, Co, Ni, and minor Mn was observed at the cell walls.
The scanning speed of 800 mm/s correlates with the least de-
fects observed in this LPBF process.

(3)  The  mechanical  properties  are  predominantly  influ-
enced  by  martensitic  phase  transformation  strengthening.
The tensile  properties  exhibit  a  trend of  initial  increase fol-
lowed by a decrease; the peak UTS recorded is (1088.3 ± 2.0)
MPa,  with  an  EL  of  (16.76  ±  0.10)%,  indicating  a  ductile
fracture mode.

(4) A correlation has been identified between the cellular
microstructure  grain  size  and  the  mechanical  properties  of
martensitic stainless steel in the as-printed condition. Within
the scanning speed range of 400–1000 mm/s, the cellular mi-
crostructure  size  significantly  influences  the  UTS  and  EL.

The  UTS  is  defined  by  the  equation  UTS  = −1463.8D2 +
1320.8D + 792, while the EL is given by ( EL = 312.7D3 −
569.5D2 + 317.6D − 39.2). 
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