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Abstract: Microwave  absorbers  have  great  potential  for  military  and  civil  applications.  Herein,  Co0.5Zn0.5Fe2O4/residual  carbon
(CZFO/RC) composites have been successfully prepared using a hydrothermal method. RC was derived from coal gasification fine slag
(CGFS) via pickling, which removes inorganic compounds. Multiple test means have been used to study the chemical composition, crys-
tal structure, and micromorphology of the CZFO/RC composites, as well as their electromagnetic parameters and microwave absorption
(MA) properties. The CZFO/RC composites exhibit excellent MA performance owing to their dielectric and magnetic losses. When the
thickness of CZFO/RC-2 (FeCl3·6H2O of 0.007 mol, ZnCl2 of 0.00175 mol, and CoCl2·6H2O of 0.00175 mol) is 1.20 mm, the minimum
reflection loss (RLmin) is −56.24 dB, whereas at a thickness of 3.00 mm and 6.34 GHz, RLmin is −45.96 dB and the maximum effective ab-
sorption bandwidth is 1.83 GHz (5.53–7.36 GHz). Dielectric loss includes interface and dipole polarizations, while magnetic loss includes
current and remnant magnetic loss. CZFO/RC-2 exhibits high impedance matching, allowing microwave to enter the absorber. The com-
puter simulation technology confirms that CZFO/RC-2 considerably decreases the radar cross-section. This study can be used to promote
the use of CGFS as electromagnetic wave (EMW)-absorbing materials.

Keywords: cobalt–zinc ferrite; residual carbon; microwave absorption; coal gasification fine slag; coal-based solid waste

  

1. Introduction

Radar is the main long-range detection method on battle-
fields, and is widely employed for the detection of sea, land,
air, and celestial targets [1–3]. Therefore, it is essential to re-
duce the radar cross-section (RCS) and radar echoes through
radar stealth technology [4–8]. Radar stealth technology can
be further categorized into shape and material-stealth techno-
logies [9–11]. Electromagnetic wave (EMW)-absorbing ma-
terials  convert  incoming  radar  waves  into  thermal  energy,
which  is  then  dissipated  to  eliminate  radar  echoes [12–15].
Thus, EMW-absorbing materials have attracted considerable
research attention [16–19]. Currently, radars posing military
threats are conducting search, tracking, fire control, and guid-
ance tasks and primarily operate in the S, C, X, and Ku bands
(2.0–18.0 GHz) [20–21]. In addition, the rapid development
of  5G  technology  and  the  wide  application  of  microwave
technology  (e.g.,  wireless  communications)  in  civilian  ap-
plications  have  numerous  adverse  effects [22–25].  Thus,
EMW-absorbing  materials  can  be  used  in  civilian  applica-
tions to prevent electromagnetic (EM) interference [26–29].
An  ideal  EMW-absorbing  materials  should  be “thin,  light-
weight, broad, and strong” [30–31].

In China, hundreds of millions of tons of coal gasification
fine slag (CGFS) have been accumulated in storage, greatly
hindering  the  development  of  the  coal  chemical  industry

[32–33]. According to previous research, CGFS is a powder
with a high residual carbon (RC) content, high moisture con-
tent, and rich pore structure [34–37]. The RC consists mainly
of  porous  irregular  particles  with  highly  developed  pore
structures  and  a  few spherical  particles,  some of  which  are
embedded in  irregular  particles.  Thus,  the  RC structure  ex-
hibit high orderliness [38–39]. The RC from CGFS is typic-
ally  formed  using  a  high-temperature  gasification  process,
and  it  has  more  abundant  pores,  a  higher  specific  surface
area, more ordered carbon crystal structure, and more active
sites than those from coal coke [40–42]. Experimental stud-
ies have indicated that RC is a dielectric type of microwave
absorber, and its microwave absorption (MA) mechanism is
relatively simple, resulting in its thickness is too thick and the
effective  absorption  bandwidth  (EAB)  is  narrow [43].  The
MA performance of RC does not satisfy the requirements of
modern microwave absorbers. Therefore, the performance of
RC as a microwave absorber needs to be optimized by intro-
ducing other substances, such as magnetic ferrites.

Spinel ferrite microwave absorbers have received consid-
erable  attention  from researchers  because  of  their  excellent
MA performance [44–49]. Numerous studies suggested that
the  MA  mechanism  of  spinel  ferrite  primarily  results  from
natural resonance loss [50]. However, the loss frequency of
spinel ferrite generally falls within the MHz frequency range
[51–54]. Therefore, research has been focusing on enhancing 

 
✉ Corresponding author: Shengtao Gao      E-mail: shtgao@aust.edu.cn
© University of Science and Technology Beijing 2025

INTERNATIONAL JOURNAL OF
Minerals, Metallurgy and Materials

Volume 32, Number 3, March 2025
Page 534

Research Article https://doi.org/10.1007/s12613-024-3028-z

mailto:shtgao@aust.edu.cn
https://doi.org/10.1007/s12613-024-3028-z
https://doi.org/10.1007/s12613-024-3028-z
https://doi.org/10.1007/s12613-024-3028-z
https://doi.org/10.1007/s12613-024-3028-z
https://doi.org/10.1007/s12613-024-3028-z
https://doi.org/10.1007/s12613-024-3028-z
https://doi.org/10.1007/s12613-024-3028-z
https://doi.org/10.1007/s12613-024-3028-z
https://doi.org/10.1007/s12613-024-3028-z
https://doi.org/10.1007/s12613-024-3028-z
https://doi.org/10.1007/s12613-024-3028-z


the magnetic loss characteristics of this material and enrich-
ing  other  EM  loss  mechanisms  to  further  enhance  its  MA
characteristics. Co0.5Zn0.5Fe2O4 (CZFO) exhibits a high satur-
ation  magnetization  and  strong  magneto  crystalline  aniso-
tropy [55–56], allowing its impedance to be controlled by re-
ducing  its  complex  dielectric  constant,  which  enhances  its
MA performance. The minimum reflection loss (RLmin) value
of the nano-CZFO ferrite prepared by Liu et al. is −11.7 dB
[57]. Zhang et al. [58] prepared CZFO/reduced graphene ox-
ide  absorbers  using  a  chemical  co-precipitation  method  in-
volving calcination at 700°C. Ma et al. [59] prepared Co–Zn
ferrite/graphene  EMW-absorbing  material  using  a  hydro-
thermal  method.  Shu et  al. [60] prepared  Co–Zn  ferrite/N-
doped multiwalled carbon nanotubes for MA using a hydro-
thermal  method.  It  can  be  seen  from  these  studies  that  the
MA performance of Co–Zn ferrite particles of a single com-
ponent is poor. Researchers have prepared EMW-absorbing
materials with excellent properties through the composite of
magnetic  Co–Zn  ferrite  and  dielectric  carbon  matrix.
However,  carbon  substrates [61–63] such  as  graphene  and
carbon  nanotubes  are  expensive  and  require  complex  pro-
duction paths, whereas RC from CGFS is cheap and easy to
obtain.

In this study, cobalt–zinc ferrite is composited with RC to
enhance its magnetic and dielectric properties. The presence
of numerous heterogeneous interface structures of magnetic
particles  with  RC  can  generate  an  interfacial  polarization
effect,  which  can  enhance  the  conversion  of  EMW  into
thermal  energy [64].  Moreover,  the  EM  parameters  of  the
CZFO/RC composites can be adjusted by changing the pro-
portion of  magnetic  CZFO particles  in  this  RC-based com-
posite  material.  This  study provides  a  new pathway for  the

utilization of CGFS that can enrich the development of coal
chemistry. 

2. Experimental 

2.1. Materials

The RC used in this work is the same as that reported in
our previous work [65–66]. All the reagents used in the ex-
periments  were  of  analytical  grade.  Iron  chloride  hexahy-
drate  (FeCl3·6H2O),  cobalt  chloride  hexahydrate  (CoCl2·
6H2O),  zinc  dichloride  (ZnCl2),  sodium  acetate  anhydrous
(NaAc), polyethylene glycol 4000 (PEG 4000), and ethylene
glycol (EG) were purchased from Sinopharm Chemical Re-
agent Co., Ltd., China. 

2.2. Synthesis of CZFO/RC composites

CZFO/RC  were  synthesized  using  a  hydrothermal  tech-
nique (Fig. 1). RC (0.6 g) was dissolved in EG (40 mL) and
sonicated  for  30  min.  Next,  FeCl3·6H2O,  ZnCl2,  and
CoCl2·6H2O  were  added,  and  the  mixture  was  stirred  for
15 min. PEG 4000 (1.0 g) and NaAc (3.6 g) were mixed with
other components. The mixture was stirred for an additional
1  h.  The  resulting  mixture  was  poured  into  a  Teflon  auto-
clave and heated at 200°C for 10 h. Finally, the sample was
rinsed with deionized water and anhydrous ethanol and dried
overnight at 60°C. CZFO/RC composites with different con-
centrations  of  FeCl3·6H2O,  ZnCl2,  and  CoCl2·6H2O  were
labeled as CZFO/RC-1 (0.006 mol/0.0015 mol/0.0015 mol,
respectively), CZFO/RC-2 (0.007 mol/0.00175 mol/0.00175
mol,  respectively),  and  CZFO/RC-3  (0.008  mol/0.002
mol/0.002 mol, respectively).

  

EG

RC

Ultrasonic

FeCl3∙6H2O, 
ZnCl2 and
CoCl2∙6H2O

NaAc and PEG 4000

Mechanical stirring 10 h

Washing

Drying 

200°C

Fig. 1.    Flow chart of CZFO/RC composites synthesis.
 
 

2.3. Characterization of the CZFO/RC composites

The crystal structures of the composites were tested using
a LabX XRD-6000 X-ray diffractometer (Shimadzu, Japan)
at scan range (2θ) of 15°−80° and scan rate of 2°/min. Fouri-
er  transform  infrared  spectra  (FT-IR)  were  obtained  by  a
VECTOR-33  device  (Bruker,  Germany)  within  the
wavenumber  spectrum  of  500–4000  cm−1.  The  level  of
graphitization of the composites was determined by Raman

spectroscopy (HORIBA Jobin Yvon, France). The perform-
ance of  the magnetic  hysteresis  loops was assessed using a
PPMS-9  value  stream  mapping  model  (VSM,  Quantum
Design,  USA)  at  a  field  intensity  of  ±3  T/MH.  The  micro-
structure  and  elemental  distribution  of  the  CZFO/RC  com-
posites  were  investigated  via  scanning  electron  microscopy
(JEOL, Japan) and transmission electron microscopy (JEOL,
Japan). X-ray photoelectron spectroscopy (XPS) was used to
analyze the chemical states of C, O, Fe, Zn, and Co using an
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ESCALABMK instrument (Thermo Fisher, USA). The EM
parameters  of  CZFO/RC composites  were  assessed  using  a
vector network analyzer (AV 3629D, China). This measure-
ment was conducted in the frequency range of 2.0–18.0 GHz.
A  mixture  of  CZFO/RC  composite  (40wt%)  and  paraffin
wax (60wt%) was prepared and thoroughly blended. The res-
ulting mixture was pressed into cylindrical shapes. 

3. Results and discussion 

3.1. Microstructure  and  composition  of  the  CZFO/RC
composites

Fig. 2(a) shows the X-ray diffraction (XRD) curves of the
RC  and  CZFO/RC.  Sharp  characteristic  peaks  occurred  at
30.1°,  35.3°,  43.1°,  53.4°,  56.9°,  and  62.7°,  which  corres-

pond to  (220),  (311),  (400),  (422),  (511),  and  (440)  crystal
faces  of  CZFO  (JCPDS  No.  22-1012),  respectively.  This
confirms that the material contains CZFO. With an increase
in the metal content in the solution, the corresponding posi-
tion  of  the  diffraction  peak  hardly  changes,  indicating  the
successful  loading  of  nano-ferrite  in  the  three  synthesized
samples.  The  high-temperature  and  high-pressure  environ-
ment of the gasifier, to which the carbon in coal is subjected,
converts some of its macromolecules into graphitized carbon
through atomic rearrangement. Thus, the strong characterist-
ic peak of graphitic carbon (002) in the three composites oc-
curs  at  25.7° [67].  With  increasing  nanoferrite  content,  the
characteristic  peak  intensity  of  the  (002)  surface  decreases,
indicating that increasing the loading of nanoferrite particles
on the RC surface affects the carbon peak intensity.
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Fig. 2.    XRD pattern (a), FT-IR spectra (b), and Raman pattern (c) of CZFO/RC composites and RC.
 

To further determine the phase structure of the CZFO/RC
composites, their infrared spectra were obtained in Fig. 2(b).
After loading CZFO on the RC, a large absorption peak oc-
curs at 3200–3450 cm−1, which is attributed to some residual
water, the stretching vibration of hydroxy (–OH), and certain
oxygen-containing groups in the RC itself.  The C–H vibra-
tion can be assigned to the peak at 2940 cm−1. The weak peak
at 1550 cm−1 is attributed to C=C in CZFO/RC composite, in-
dicating the opening of the double bond [68]. A peak at 1300
cm−1 was  observed,  which  might  be  attributed  to –OH  of
oxygen-containing groups in the RC. The peak correspond-
ing to C–O stretching vibration was observed at 1048 cm−1.
Moreover, the peak near 1600 cm−1 is assigned to C=O and

C–O of associated state in –COOH. The successful synthesis
of  ferrite  is  indicated  by  the  absorption  peak  of  the  Fe–O
stretching vibration at approximately 580 cm−1.

Raman  characterization  was  performed  to  further  study
the effect of the CZFO loading on the graphitization level of
RC in the composite (Fig. 2(c)). The intensity ratio of D and
G peaks (ID/IG) of CZFO/RC-1, CZFO/RC-2, and CZFO/RC-
3 are 1.031, 1.062, and 1.061, respectively. Compared with
pure RC, the loading of CZFO on the RC surface can consid-
erably increase the ID/IG value, indicating a reduction in the
RC and improvement in the electron migration ability within
the composites.

VSM was employed to detect the magnetic of the CZFO/
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RC. In Fig. 3(a), the saturation magnetization (Ms) of CZFO/
RC-1,  CZFO/RC-2,  and  CZFO/RC-3  are  41.6,  44.6,  and
45.7 emu/g, respectively. Therefore, Ms is correlated with the
CZFO  content  in  the  composite  and  increases  with  its  in-
crease, which also increases the EMW energy. Furthermore,
in Fig.  3(b),  the estimated coercivity  values  (Hc)  are  177.1,
332.4, and 366.2 Oe, respectively. These results indicate that
CZFO/RC has certain magnetic properties, which is the main
reason resulting in the magnetic loss for incident EMW en-
ergy.

The  scanning  electron  microscopy (SEM) and  the  trans-
mission electron microscopy (TEM) were used to investigate
morphology,  microstructure,  and  elemental  distribution  of
CZFO/RC composites (Figs. 4 and 5). Fig. 4(a), (d), and (g)
shows that CZFO exhibits a nanospherical structure (diamet-
er of 250–350 nm). As shown in Fig. 4(b), (e), and (h), nu-
merous  CZFO nanospheres  are  gathered,  forming  spherical
shapes on the RC sheets  and thoroughly combined to  form
multiple heterojunction interfaces.  The formation of hetero-
geneous  interfaces  enhances  the  generation of  interface  po-

 

0

−40

−20

0

20

40
M

ag
n
et

iz
at

io
n
 /

 (
em

u
·g

−1
)

Magnetic field / Oe 

M
ag

n
et

iz
at

io
n
 /

 (
em

u
·g

−1
)

CZFO/RC-1
CZFO/RC-2
CZFO/RC-3

(a)

−750 −500 −250 0 250 500 750
−20

−10

0

10

20

CZFO/RC-1
CZFO/RC-2
CZFO/RC-3

(b)

Ms: 41.6, 44.6, 45.7

Hc: 177.1, 332.6, 366.2

−20 −10 10 20
Magnetic field / (103 Oe)
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larization and MA performance [69–70]. In Fig. 4(c), (f), and
(i), the CZFO nanospheres loaded on RC flakes formed sev-
eral  heterogeneous  interfaces,  enhancing  the  interfacial  po-
larization and promoting MA of the CZFO/RC composites.
Fig. 4(j) shows the energy-dispersive X-ray spectrum (EDS)
corresponding to CZFO/RC-2.  The CZFO/RC composite is
mainly composed of C, O, Fe, Co, and Zn elements, and the
test results are consistent with the element composition of the
CZFO/RC material.

The lattice spacing of 0.16 and 0.25 nm, corresponding to
the (511) and (311) crystal planes of CZFO, respectively, was
observed using high-resolution TEM as shown in Fig. 5(c),
(f),  and  (i).  The  elemental  mapping  results  of  CZFO/RC-2
(Fig. 5(j)) are in good agreement (for all the elements) with
the  SEM  results.  These  results  confirm  the  successful  syn-
thesis of CZFO/RC composites with excellent states existing
numerous polarization behavior conditions.

The  XPS  spectrum  of  CZFO/RC-2  is  shown  in Fig.  6.
CZFO/RC-2 contains C, O, Co, Fe, and Zn elements, which
is consistent with the element composition of the CZFO/RC.
In Fig. 6(b), the peaks at 710.1 and 713.2 eV correspond to
Fe 2p3/2, whereas that at 724.1 eV corresponds to Fe 2p1/2. In
Fig.  6(c),  Co  2p3/2 and  Co  2p1/2 coincide  with  the  peaks  at
781.0 and 787.6 eV, respectively, indicating the presence of
Co2+. For high-resolution spectrum of Zn 2p orbit, the peaks

at 1022.3 and 1045.4 eV can be assigned to Zn 2p3/2 and Zn
2p1/2, respectively. 

3.2. Microwave  absorption  properties  of  the  CZFO/RC
composites

Impedance  matching  is  necessary  for  the  EMW to  enter
the  absorber.  Impedance  matching  can  be  calculated  using
Eq. (1):

Zin = Z0

√μr

εr
tanh

[
j
(

2π f d
c

)
√μrεr

]
(1)

where Zin is the input impedance of the CZFO/RC composite,
Z0 is the characteristic impedance of free space, μr and εr are
the relative complex permittivity and complex permeability
of  the absorber,  respectively, f, d,  and c are  the microwave
frequency, thickness of the absorber, and speed of light, re-
spectively.

In Fig .7, the RL, matching thickness (tm) and impedance
matching value (|Zin/Z0|) with absorption peak frequency (fm)
are  described.  According  to λ/4  matching  theory,  the  rela-
tionship between fm and tm can be expressed using Eq. (2).

tm =
nλ
4
=

nc

4 fm

√∣∣∣εrμr

∣∣∣ (n = 1,3,5, ...) (2)

where λ is the wavelength.
texp
mThe results show that all the tm experimental values ( )
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tsim
mare  on  the λ/4  curve  (  curve,  the tm simulation  values),

which means that the λ/4 matching theory basically domin-
ates the relationship between fm and tm. When excellent MA
properties are obtained, the |Zin/Z0|  corresponding to the fre-
quency at which the RLmin is reached is almost equal to 1. The
results  show  that  the  impedance  matching  performance  of
CZFO/RC-1,  CZFO/RC-2,  and  CZFO/RC-3  are  good.  The
excellent impedance matching of the EMW performance of
CZFO/RC  can  be  attributed  to  the  maintenance  of  a  good
balance between complex permittivity and permeability.

The RL values of CZFO/RC composites can be calculated
using Eq. (3) to evaluate their MA properties.

RL(dB) = 20lg
∣∣∣∣∣Zin−Z0

Zin+Z0

∣∣∣∣∣ (3)

Fig.  8 shows  the  RL  curve  and  three-dimensional  (3D)
diagram of the CZFO/RC composites, which are used to ex-
plore the effect of different contents of CZFO nanospheres on
the  absorption  properties  of  the  CZFO/RC  composites.  In
Fig. 8(a) and (e), the RLmin of CZFO/RC-1 and CZFO/RC-3
are −28.31 and −27.32 dB, respectively. The EAB values are
3.08  and  4.16  GHz,  respectively,  indicating  excellent  MA
performance.  The  RLmin of  CZFO/RC-2  can  reach −56.24
dB,  and  the  EAB  covers  nearly  50%  of  the  Ku  band  at  a
thickness  of  1.20  mm.  At  a  CZFO/RC-2  thickness  of  3.00
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mm, the RLmin is −45.96 dB at 6.34 GHz and the EAB is 1.83
GHz. Thus, the MA performance of the CZFO/RC compos-
ites can be adjusted by changing the proportion of magnetic
CZFO nanospheres.

According  to  the  MA theory,  the  absorption  capacity  of
the  absorber  should  be  mainly  evaluated  based  on  the  EM
parameters (Fig. 9). The real part (ε', μ') of the absorber re-
flects its EMW storage capacity, and the imaginary part (ε",
μ") reflects its EMW dissipation capacity. In Fig. 9(a) and (c),
ε' and μ' of  the  CZFO/RC composites  decrease  with  an  in-
crease in the frequency. With an increase in the CZFO nano-
spheres, ε' decreases,  being  conducive  to  MA  attenuation,
while μ' increases,  improving  the  magnetic  properties. Fig.

9(b) and (d) shows that the changes in ε" and μ" are complex,
indicating  a  strong EMW dispersion  effect  of  the  absorber.
CZFO/RC-1,  CZFO/RC-2,  and  CZFO/RC-3  exhibit  appar-
ent  relaxation  behavior  with  clear  polarization  behavior  in-
side the material. Fig. 9(e) and (f) shows the tangent values of
the  dielectric  loss  (tanδε)  and  magnetic  loss  (tanδµ)  of  the
CZFO/RC composites, respectively. The tanδε and tanδµ are
important  parameters  for  assessing  the  loss  capacity  of  ab-
sorbers, which can further clarify the loss mechanism of the
composites.  The results  show that  the tanδε value is  greater
than the tanδµ value, indicating that dielectric loss dominates
the CZFO/RC composites.

The relationship between ε′′ and ε′ is expressed by Eq. (4).
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(
ε′− εs+ε∞

2

)2

+ (ε′′)2
=

(
εs−ε∞

2

)2

(4)

where εs is the static dielectric constant and ε∞ is the relative
dielectric constant of the composites.

During Debye relaxation, the curve of the ε" vs. ε' of the
EMW  absorber  should  be  a  Cole–Cole  semicircle.  Each
semicircle denotes a Debye relaxation process that enhances
the MA capability of the absorber [71]. In Fig. 10(a)–(c), the
CZFO/RC composites exhibit two Cole–Cole semicircles, in-
dicating that part of the dielectric loss of the CZFO/RC com-
posite  is  attributed  to  interfacial  polarization.  According  to
relevant  studies,  natural  resonance  and  eddy  current  losses
are  the  main  reasons  of  magnetic  loss  in  magnetodielectric
composites [72–74]. Eq. (5) shows that the eddy current loss
is affected by the diameter (D) and conductivity (σ). Magnet-
ic loss is caused only by eddy current loss at a constant C0. In

Fig.  10(d),  the  fluctuation  of C0 suggests  that  the  magnetic
loss is not only caused by eddy current loss, but also by other
forms of loss mechanisms.

μ′′ ≈ 2πμ0(μ′)2σD2 f
3

(5)

C0 = μ′′(μ′)−2 f −1 (6)
μ0where  is the permeability of vacuum.

The  attenuation  constant  (α)  is  often  used  to  reflect  the
EMW attenuation capacity of absorbers:

α =
√

2π f
c
×√

(μ′′ε′′−μ′ε′)+
√(

μ′′ε′′−μ′ε′)2
+

(
ε′μ′′+ε′′μ′

)2 (7)

Fig.  10(e)  shows  that  among  the  three  samples,  CZFO/
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RC-2 has the lowest α value, whereas CZFO/RC-2 exhibits
the best MA performance. This is in good agreement with the
above results.

The excellent MA performance of CZFO/RC are mainly
due to the following reasons (Fig. 11). First, RC has a suit-
able  dielectric  constant,  providing  an  absorber  with  a  suit-
able  impedance  match.  Second,  the  presence  of  numerous
defects  and  a  wide  range  of  oxygen-containing  functional
groups (e.g., –COOH) can generate defects and dipole polar-
izations at the RC interface, reducing the EMW energy [75].
Third, numerous CZFO nanospheres get adsorbed on the RC
interface,  generating  a  heterogeneous  interface  between  the
CZFO nanospheres and RC. This heterogeneous surface can
attenuate  the  energy  of  the  incident  EMW  through  polar
bonds or electric charge. Fourth, the EM energy is absorbed
by electrons, allowing them to migrate and jump between the
carbon  layers  of  RC.  According  to  Cao’s  electron  jump

theory, the absorbance of EM energy by electrons promotes
its conversion into thermal energy. Finally, the CZFO nano-
spheres  introduce  natural  resonance  and  eddy  currents  into
the  composite,  further  attenuating  the  incident  EMWs.
Moreover,  the  magnetic  of  CZFO  nanospheres  can  cause
magnetic loss, thereby enhancing the loss mechanism. There-
fore,  compared  with  magnetic  carbon-matrix  composites,
which exhibit a magnetodielectric cooperative loss mechan-
ism [58,60,76–78], CZFO/RC composites excellent efficient
MA properties (Fig. 10(f)).

Stealth aircraft use RCS to measure radar wave scattering
capability.  A  perfect  conductor  substrate  (PEC,  180  mm  ×
180 mm, d = 1.0 mm, f = 18.00 GHz) coated with the CZFO/
RC  composites  was  simulated  using  commercial  EM  field
simulation software. Fig. 12 shows the 3D intensity images
and RCS curves of the PEC and PEC coated with CZFO/RC-
2 at −90°–90°. At 18.00 GHz, the maximum RCS value of
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CZFO/RC-2 coated PEC (1.20 mm) is considerably smaller
than  that  of  the  pure  PEC  model,  indicating  that  the
CZFO/RC-2 coating can lower the radar scattering intensity
of the PEC model. The RCS simulation results confirm that
the  CZFO/RC  composites  exhibit  excellent  RCS  reduction
ability and can effectively decrease the EM scattering of the
PEC substrates. 

4. Conclusion

CZFO/RC  composites  were  successfully  produced  via  a
hydrothermal  method,  in  which  CZFO  nanospheres  were
uniformly distributed on the RC. CZFO/RC-2 exhibits excel-
lent  MA performance  (RLmin = −56.24  dB and  thickness  =
1.20 mm). Even at 6.34 GHz and a CZFO/RC-2 thickness of
3.00 mm, RLmin reaches −45.96 dB with a maximum EAB of
1.83 GHz (5.53–7.36 GHz). Interfacial and dipole polariza-
tions are the main sources of dielectric loss in CZFO nano-
spheres. The results show that the CZFO/RC composites ex-
hibit  a  special  heterostructure,  good  impedance  matching,
and various EM loss mechanisms, indicating their excellent
MA  performance.  This  study  expands  the  application  of
CGFS in the field of microwave absorption. 
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