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1. Characterizations methods
The crystal structure and composition of the products were characterized by X-ray powder diffraction (XRD, Rigaku D/max-2500 diffractometer with Cu Ka radiation 40 kV, 100 mA) and X-ray photoelectron spectroscopy (XPS) on a Thermo Fisher ESCALab 250 system with an Al Ka X-ray source and pass energy of 40 eV. The binding energy was calibrated using the C 1s peak (284.8 eV). The morphology and microstructure were characterized via field-emission scanning electron microscopy (FEI, Quanta FEG 250) and JEOL JEM-2100 transmission electron microscope. Fourier transform infrared (FTIR) spectra were measured using Thermo Electron Nicolet-360, and Raman spectra were conducted on Aramis using a laser with a wavelength of 532 nm. The surface and pores features were measured via nitrogen adsorption-desorption isotherms measured at 373 K using NOVA Surface Area and Porosity Analyzer (Quantum, USA). The optical responses were detected by UV-visible spectrophotometer (Cary5000 UV-vis-NIR, USA). The steady state photoluminescence (PL) spectroscopy was performed on a fluorescence spectrophotometer (FP-6500, Japan) at room temperature with an excitation wavelength of 350 nm. Time-resolved photoluminescence (TRPL) decay spectra were measured on a FLS980 fluorescence spectrometer (Edinburgh instrument). The electron paramagnetic resonance (EPR) measurements were performed on a Bruker EMXplus EPR spectrometer. The g-factors were determined by the EPR Data Processing program.

2. Photoelectrochemical measurements

All the photoelectrochemical measurements were performed in a homemade three electrode quartz cell on CHI660D electrochemical analyzer (Chenhua, China) under the irradiation of a 300 W Xe arc lamp system at room temperature. Photocatalyst-covered fluorine-doped tin oxide (FTO) glasses, Pt plate, saturated Ag/AgCl, and 1 mol/L Na2SO4 solution were used as the working electrode, counter electrode, reference electrode and electrolyte respectively. 

3. Figures
[image: image1.png]
Fig. S1.  The optical spectrum and the intensity of 300 W Xe lamp (a) and the optical spectrum and the transmission of band-pass filters with central wavelength of 365 nm (b), 400 nm (c) and 500 nm (d).
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Fig. S2.  The diameter distribution histogram of MT-2.
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Fig. S3. XPS survey spectra of M and MT-2.
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Fig. S4. Room temperature EPR spectra of M and MT-2.

[image: image5.png]
Fig. S5.  The contact angle of M and MT-2.
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Fig. S6.  XPS survey spectra (a) and high resolution XPS spectra for Cr2p (b) of MT-2 used after photocatalytic Cr(VI) reduction reaction.
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Fig. S7. The SEM images after Cr(VI) reduction experiments.
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Fig. S8.  The photocatalytic performance curves of MT-2 with band-pass filters (a) and corresponding apparent reaction rate constant k (b).
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Fig. S9.  The photodegradation curve of methylene blue (MB) over MT-2.
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Fig. S10.  Valence band (VB) XPS of M and TiO2.
As shown in Fig. S10, the valence band (VB) XPS of M and TiO2 were measured. The intercept of the curve on the x-axis indicated the energy gaps of semiconductor between the Fermi level (Ef) and VB. Combined with the Mott-schottky plots, the HOMO of M and VB of TiO2 could to be ~2.10 and ~2.78 V, agreeing well with the results calculated based on the bandgap energy. 
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Fig. S11.  The EPR spectra of ·O2− trapped by DMPO over M and MT-2.

4. Tables 
Table S1. The parameters of band-pass filters with central 
wavelength of 365 nm, 400 nm and 500nm
	Parameters
	365 nm
	400 nm
	500 nm

	Scan-Range
	200.0-1100.0 nm
	200.0-1100.0 nm
	200.0-1100.0 nm

	Central wavelength
	367.5 nm
	400 nm
	501 nm

	Full Width Half Maximum
	25 nm
	20 nm
	19 nm

	Peak Transmission
	72.96%
	82.25%
	89.99%

	Peak wavelength
	375 nm
	403 nm
	504 nm

	Out of Band Transmission
	OD3/0.1%
	OD3/0.1%
	OD3/0.1%

	Sizes
	Φ63×2mm
	Φ63×2mm
	Φ63×2mm


Table S2.  The XPS atomic percentage and peak area in M and MT-2

	
	Peak area
	Atomic (%)

	
	M
	MT-2
	M
	MT-2

	O 1s
	124034.9+89670.7+ 46192.35


	402652.6+78793.09+ 49970.4
	29.2
	49.35

	Ti 2p
	118620.8+66189.25


	358326.5+217211.9
	8.81
	22.21

	C 1s
	46925.16+73679.27+ 45792.25+27264.55


	39000.63+21955.43+ 37423.39+11659.3
	56.49
	25.61

	N 1s
	19062.21+9868.316
	13586.06+3363.438
	5.5
	2.83


Table S3.  Specific surface area and pore volume of

NH2-MIL-125, TiO2@NH2-MIL-125 and TiO2
	Parameter
	M
	MT-0.5
	MT-1
	MT-2
	TiO2

	SBET (m2/g)
	1210.45
	463.45
	347.25
	105.28
	117.44

	Vv (cm3/g)
	0.61
	0.56
	0.53
	0.47
	0.46


Table S4.  Photogenerated carriers’ lifetime of M and MT-2
	Sample
	τa (ns)
	τ1 (ns) (Rel%)
	τ2 (ns) (Rel%)
	τ3 (ns) (Rel%)

	M
	2.15
	0.2394 (54.15)
	1.733 (27.14)
	8.973 (18.71)

	MT-2
	3.54  
	0.4036 (49.21)
	2.496(24.82)
	1.106 (25.97)


The carrier density of Nd was calculated and shown in Table S3 based on the following equation: 
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where C is the capacitance of space charge layer, Nd is the carrier density, e is the electron charge (1.602×10-19 C), ε0 is the permittivity in vacuum (8.85×10-14 F/cm), ε is the relative permittivity of the semiconductor (1.90 for M, and 170 for TiO2) [1], A is the electrode area, E is the applied potential, Efb is the flat band potential, κ is the Boltzmann constant and T is the temperature. 
Table S5.  Carrier density of M, MT-2 and TiO2 
calculated based on the Mott-Schottky curves
	Sample
	Efb (V)
	Nd (cm-3)

	M
	-0.70 
	1.65×1022

	MT-2
	-0.64 
	2.36×1020

	TiO2
	-0.56
	1.48×1020
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