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Experimental

Material Characterizations

Powder X-ray diffraction (XRD) patterns of materials were collected by Shimadzu XRD-6000 diffractometer with Cu Kα radiation. The morphology was observed by a scanning electron microscope (SEM, Zeiss Merlin Compact) and transmission electron microscope (TEM, JEOL JEM-2100F) equipped with energy dispersive spectrometer (EDS, Oxford X-Max). Raman spectra were recorded on a Renishaw Raman spectroscope with an exciting source of 532 nm. Surface composition and valence state of samples were measured by X-ray photoelectron spectroscopy (XPS, Thermo Fisher ESCALAB 250 Xi) with monochromatized Al Kα radiation (1486.6 eV). N2 adsorption-desorption isotherms were performed by Micromeritics ASAP 2020 system at 77 K. The specific surface area was calculated based on Brunauer-Emmett-Teller (BET) model, and the pore size distribution was analyzed by the Barrett-Joyner-Halenda (BJH) method.

Electrochemical Measurements
The electrochemical measurements were performed on CHI-760E electrochemical workstation (CH Instruments, Inc., Shanghai, China) with a standard three-electrode system at room temperature. For the ORR, the Ag/AgCl (saturated KCl solution) electrode, Pt wire, and glassy carbon rotating disk electrode (RDE, 5 mm in diameter) were employed as the reference, counter, and working electrode, respectively. For the OER, graphite rod, Hg/HgO (1.0 M KOH) and glassy carbon electrode was used as the counter, reference, and working electrodes, respectively. Typically, the homogeneous catalyst ink was prepared by dispersing 5.0 mg of catalyst in 1 mL of mixture containing ethanol (600 μL), deionized water (370 μL), and 5 wt% Nafion solution (30 μL), followed by sonicated for 0.5 h. Then, the freshly-prepared catalyst ink was uniformly dropped onto the glassy carbon electrode to obtain a mass loading of ~0.34 mg cm-2. As a comparison, the working electrodes of Pt/C and RuO2 were also fabricated by the same protocol as contrasts for ORR and OER, respectively.

The KOH electrolyte in the cell was saturated by a flowing N2 or O2 gas for 30 min before the test. For the OER, the electrocatalytic performance was tested in an O2-saturated 1.0 M KOH by LSV curves at a scan rate of 10 mV s-1 with iR compensation. The potentials were calculated using the equation of ERHE = EHg/HgO + 0.098 + 0.0592 × pH. For the ORR, CV curves were recorded in an O2-saturated 0.1 M KOH at a scan rate of 50 mV s-1, and polarization curves were collected with a scan rate of 10 mV s-1 at rotating speeds from 400 to 2025 rpm. The potentials were calculated using the equation of ERHE = EAg/AgCl + 0.197 + 0.0592 × pH - 95% iR. For both OER and ORR, the Tafel slope was calculated based on the Tafel equation, whereas the ESCA value was estimated from the electrochemically double-layer capacitance (Cdl), which is obtained by measuring CV curves at different scan rates (20–120 mV s-1) in the non-Faradaic potential range. The electron transfer number (n) during the ORR was obtained by the Koutecky-Levich (K-L) Equation. The long-cycle durability was assessed via a chronopotentiometry measurement at the current density of 10 mA cm-2. Also, the accelerated degradation test was performed by subjecting the electrode to 1000 consecutive CV cycles. Electrochemical impedance spectra (EIS) were recorded in the frequencies ranged from 100 kHz to 0.1 Hz with an amplitude of 5 mV.

Rechargeable Zn-air battery measurements

A liquid-state Zn-air battery (ZAB) was fabricated using a polished Zn foil as the anode, 6.0 M KOH containing 0.2 M zinc acetate as the electrolyte, and the catalyst-coated carbon paper as the cathode (a mass loading of ~1.5 mg cm-2). The polarization curve was recorded on a CHI-760E electrochemical workstation. The specific capacity was calculated from the discharge data normalized to the mass of consumed Zn, whereas the power density was obtained from LSV data. The galvanostatic discharge-charge curves was acquired on LAND CT2100A instrument at a current density of 10 mA cm-2 (12 min per cycle). The rate capability was evaluated from the discharge data under different current densities. Moreover, the solid-state flexible ZAB was customized via a layer-by-layer method, where the cleaned Zn foil and air cathode were placed face-to-face with PVA/KOH gel electrolyte. The catalyst mass loading was about 1.5 mg cm-2.
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Fig. S1. SEM images: (a) PDA; (b) CoFe0.08-ZIF; (c) NCS; (d) CoFe0.08-NC.
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Fig. S2. SEM images: (a) Co-ZIF@PDA; (b) Co@NCS; (c) Fe-ZIF@PDA; (d) Fe@NCS.
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Fig. S3. SEM images: (a) CoFe0.04-ZIF@PDA; (b) CoFe0.04@NCS; (c) CoFe0.16-ZIF@PDA; (d) CoFe0.16@NCS.
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Fig. S4. XRD patterns of the precursors.
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Fig. S5. XPS survey spectrum of CoFe0.08@NCS.
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Fig. S6. (a,c) OER Cdl calculations and (b,d) EIS plots of catalysts in 1.0 M KOH electrolyte.
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Fig. S7. OER CV curves at various scanning rates of the catalysts in an O2-saturated 0.1 M KOH solution: (a) NCS; (b) Fe@NCS; (c) Co@NCS; (d) CoFe0.04@NCS; (e) CoFe0.08@NCS; (f) CoFe0.16@NCS.
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Fig. S8. SEM images: (a) 200 nm PDA; (b) CoFe0.08-ZIF@PDA-200; (c) CoFe0.08@NCS-200; (d) 600 nm PDA; (e) CoFe0.08-ZIF@PDA-600; (f) CoFe0.08@NCS-600.
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Fig. S9. XRD patterns of CoFe0.08@NCS after 1000 cycles of OER CV scanning.
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Fig. S10. SEM image of CoFe0.08@NCS after 1000 cycles of OER CV scanning.
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Fig. S11. CV curves of CoFe0.08@NCS in N2- and O2-saturated 0.1 M KOH electrolytes with a scan rate of 50 mV s-1.
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Fig. S12. ORR Cdl plots of the catalysts in an O2-saturated 0.1 M KOH solution.
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Fig. S13. ORR CV curves at various scanning rates of the catalysts in an O2-saturated 0.1 M KOH solution: (a) CoFe0.16@NCS; (b) CoFe0.08@NCS; (c) CoFe0.04@NCS; (d) Co@NCS; (e) Fe@NCS; (f) NCS.
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Fig. S14. Rotation speed-dependent ORR polarization curves of the catalysts in an O2-saturated 0.1 M KOH solution: (a) CoFe0.16@NCS; (b) CoFe0.08@NCS; (c) CoFe0.04@NCS; (d) Co@NCS; (e) Fe@NCS; (f) NCS.
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Fig. S15.  K-L plots at different potentials of the catalysts: (a) CoFe0.16@NCS; (b) CoFe0.08@NCS; (c) CoFe0.04@NCS; (d) Co@NCS; (e) Fe@NCS; (f) NCS.
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Fig. S16. CV curves of Pt/C in O2-saturated 0.1 M KOH with/without 2 M methanol.
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Fig. S17. (a) XRD pattern and (b) ORR LSV curve of acid-etched CoFe0.08@NCS.
Table S1. Comparison of the ORR/OER activities of CoFe0.08@NCS with recently reported CoFe-based bifunctional electrocatalysts
	Catalyst
	ORR: E1/2 / V
	OER: Ej=10 / V
	Ref.

	CoFe0.08@NCS
	0.80
	1.51
	This work

	Co/CoFe@NC
	0.84
	1.54
	[S1]

	CoFe-Co5.47N@NC
	0.79
	1.63
	[S2]

	CoFe@NP-CHS
	0.86
	1.53
	[S3]

	FeCo/NSC
	0.82
	1.55
	[S4]

	CoFe-Co3C@NCNTs
	0.93
	1.55
	[S5]

	CoFe@N-CNTs
	0.85
	1.54
	[S6]

	CoFe@N-GCNCs
	0.80
	1.50
	[S7]

	CoFe/CN-C
	0.84
	1.50
	[S8]

	CoFe@N-CNWF
	0.80
	1.55
	[S9]

	WC/Co7Fe3-NPHC
	0.83
	1.55
	[S10]

	CoFe@NC-SE
	0.82
	1.62
	[S11]

	CoFe@NCNT/CFC
	0.87
	1.51
	[S12]

	CoFe/N-HCSs
	0.79
	1.52
	[S13]

	Co7Fe3/CFNC
	0.85
	1.66
	[S14]
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Fig. S18. Galvanodynamic charge and discharge polarization curves of CoFe0.08@NCS- and (Pt/C+RuO2)-based ZABs at 10 mA cm-2.
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Fig. S19. Elemental mapping distribution images of CoFe0.08@NCS air-cathode catalyst after a long-cycle ZAB operation. 

Table S2. Performance of liquid-state rechargeable ZABs assembled with CoFe0.08@NCS and reported CoFe-based electrocatalysts

	Catalyst
	∆E (= Ej=10 ( E1/2) / V
	Peak power density /

(mW cm-2)
	Charge/discharge

voltage gap / V
	Specific capacity

/ (mAh gZn-1)
	Stability
	Ref.

	CoFe0.08@NCS
	0.71
	157
	0.94@10 mA cm-2
	783@10 mA cm-2
	Life time of over 150 h@10 ma cm-2 
	This work

	Fe,Co,N-C
	0.74
	198
	0.90@10 mA cm-2
	726@2 mA cm-2
	Life time of over 51 h@5 ma cm-2
	[S15]

	FeCo/NUCSs
	0.65
	152
	0.64@10 mA cm-2
	792@10 mA cm-2
	Life time of over 102 h@10 ma cm-2
	[S16]

	A-FeCo@NCNs
	0.80
	132
	0.81@10 mA cm-2
	736@10 mA cm-2
	Life time of over 150 h@2 ma cm-2
	[S17]

	FeCoNC/D
	0.70
	157
	0.70@10 mA cm-2
	725@10 mA cm-2
	Life time of over 40 h@10 ma cm-2
	[S18]

	CoFe/Co@NCNT
	0.74
	161
	0.82@20 mA cm-2
	N/A
	Life time of over 300 h@20 ma cm-2
	[S19]

	CoFe-NCNFs
	0.70
	116
	0.70@10 mA cm-2
	N/A
	Life time of over 110 h@5 ma cm-2
	[S20]

	FeCo-NPC
	0.69
	301
	0.63@5 m A cm-2
	735@5 mA cm-2
	Life time of over 200 h@5 ma cm-2
	[S21]

	NSCA/FeCo
	0.72
	132
	0.82@10 mA cm-2
	805@20 mA cm-2
	Life time of over 120 h@10 ma cm-2
	[S22]

	FeCo/N-CF
	0.79
	172
	0.98@5 mA cm-2
	811@5 mA cm-2
	Life time of over 1000 h@5 ma cm-2
	[S23]

	FeCo-LCNT
	0.74
	127
	0.85@5 mA cm-2
	818@5 mA cm-2
	Life time of over 1100 h@5 ma cm-2
	[S24]

	CoFe@NOC
	0.69
	206
	~0.86@10 mA cm-2
	830@5 mA cm-2
	Life time of over 100 h@10 ma cm-2
	[S25]

	FeCo/NUCSs
	0.89
	152
	~1.20@10 mA cm-2
	792@10 mA cm-2
	Life time of over 100 h@10 ma cm-2
	[S26]

	FeCo/PNSC
	0.67
	145
	~0.60@10 mA cm-2
	N/A
	Life time of over 190 h@10 ma cm-2
	[S27]

	CoFe/C
	0.81
	199
	0.72@10 mA cm-2
	792@50 mA cm-2
	Life time of over 350 h@10 ma cm-2
	[S28]

	Co3Fe7-PCNF
	0.80
	213
	0.90@5 mA cm-2
	722@5 mA cm-2
	Life time of over 300 h@5 ma cm-2
	[S29]

	CoFe/NC
	N/A
	173
	0.84@10 mA cm-2
	N/A
	Life time of over 230 h@10 ma cm-2
	[S30]

	CoFe@NC/WC
	0.74
	139
	~1.00@5 mA cm-2
	N/A
	Life time of over 240 h@5 ma cm-2
	[S31]
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