S. Abazari , Ali Shamsipur, Hamid Reza Bakhsheshi-Rad, M.S. Soheilirad, F. Khorashadizade, and S.S. Mirhosseini, MgO-attached graphene nanosheet (MgO@GNS) reinforced magnesium matrix nanocomposite with superior mechanical, corrosion and biological performance, Int. J. Miner. Metall. Mater.,(2023). https://doi.org/10.1007/s12613-023-2797-0
Cite this article as:
S. Abazari , Ali Shamsipur, Hamid Reza Bakhsheshi-Rad, M.S. Soheilirad, F. Khorashadizade, and S.S. Mirhosseini, MgO-attached graphene nanosheet (MgO@GNS) reinforced magnesium matrix nanocomposite with superior mechanical, corrosion and biological performance, Int. J. Miner. Metall. Mater.,(2023). https://doi.org/10.1007/s12613-023-2797-0
Research Article

MgO-attached graphene nanosheet (MgO@GNS) reinforced magnesium matrix nanocomposite with superior mechanical, corrosion and biological performance

+ Author Affiliations
  • Received: 2 September 2023Revised: 20 November 2023Accepted: 27 November 2023Available online: 1 December 2023
  • Magnesium (Mg) alloys are gaining great consideration as body implant materials due to their high biodegradability and biocompatibility. However, they suffer from low corrosion resistance and antibacterial activity. In this research, semi-powder metallurgy followed by hot extrusion was utilized to produce the magnesium oxide@graphene nanosheets/magnesium (MgO@GNS/Mg) composite to improve mechanical, corrosion and cytocompatibility characteristics. Investigations have revealed that the incorporation of MgO@GNS nanohybrids into Mg-based composite enhanced microhardness and compressive strength. In vitro osteoblast cell culture tests show that using MgO@GNS nanohybrid fillers enhances osteoblast adhesion and apatite mineralization. The presence of MgO@GNS nanoparticles in the composites decreased the opening defects, micro-cracks and micro-pores of the composites thus prevented the penetration of corrosive solution into the matrix. Studies demonstrated that MgO@GNS/Mg composite possesses excellent antibacterial properties because of the combination of the release of MgO and physical damage to bacterium membranes caused by the sharp edges of graphene nanosheets that can effectively damage the cell wall thereby facilitating penetration into the bacterial lipid bilayer. Therefore, the MgO@GNS/Mg composite with high mechanical strength, antibacterial activity and corrosion resistance is considered to be a promising material for load-bearing implant applications.

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(142) PDF Downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return