Zhiyin Deng, Xiaomeng Zhang, Guangyu Hao, Chunxin Wei, and Miaoyong Zhu, Dissolution behavior of Al2O3 inclusions into CaO–MgO–SiO2–Al2O3–TiO2 system ladle slags, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2817-0
Cite this article as:
Zhiyin Deng, Xiaomeng Zhang, Guangyu Hao, Chunxin Wei, and Miaoyong Zhu, Dissolution behavior of Al2O3 inclusions into CaO–MgO–SiO2–Al2O3–TiO2 system ladle slags, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2817-0
Research Article

Dissolution behavior of Al2O3 inclusions into CaO–MgO–SiO2–Al2O3–TiO2 system ladle slags

+ Author Affiliations
  • Received: 9 September 2023Revised: 23 November 2023Accepted: 26 December 2023Available online: 27 December 2023
  • To investigate the dissolution behaviors of Al2O3 inclusions in CaO–5wt%MgO–SiO2–30wt%Al2O3–TiO2 system ladle slags, confocal scanning laser microscopy was conducted on the slags with different TiO2 contents (0–10wt%), and scanning electron microscopy was performed to study the interfacial reaction between Al2O3 and this slag system. The results disclose that the dissolution of Al2O3 inclusions does not result in the formation of new phases at the boundary between the slag and the inclusions. In TiO2-bearing and TiO2-free ladle slags, there is no difference in the dissolution mechanism of Al2O3 inclusions at steelmaking temperatures. Boundary layer diffusion is found as the controlling step of the dissolution of Al2O3, and the diffusion coefficient is in the range of 4.18 × 10−10 to 2.18 × 10−9 m2/s at 1450–1500°C. Compared with the solubility of Al2O3 in the slags, slag viscosity and temperature play a more profound role in the dissolution of Al2O3 inclusions. A lower viscosity and a lower melting point of the slags are beneficial for the dissolution. Suitable addition of TiO2 (e.g., 5wt%) in ladle slags can enhance the dissolution of Al2O3 inclusions because of the low viscosity and melting point of the slags, while excessive addition of TiO2 (e.g., 10wt%) shows the opposite trend.
  • loading
  • [1]
    L.X. Zhang, M. Chen, M.Y. Huang, N. Wang, and C. Wang, Dissolution kinetics of SiO2 in FeO–SiO2–V2O3–CaO–MnO–Cr2O3–TiO2 system with different FeO contents, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2703. doi: 10.1007/s11663-021-02214-6
    [2]
    G.J. Chen, S.P. He, and Q. Wang, Dissolution behavior of Al2O3 into tundish slag for high-Al steel, J. Mater. Res. Technol., 9(2020), No. 5, p. 11311. doi: 10.1016/j.jmrt.2020.07.107
    [3]
    Z.R. Li, B.R. Jia, Y.B. Zhang, S.P. He, Q.Q. Wang, and Q. Wang, Dissolution behaviour of Al2O3 in mould fluxes with low SiO2 content, Ceram. Int., 45(2019), No. 3, p. 4035. doi: 10.1016/j.ceramint.2018.11.082
    [4]
    B.N. Samaddar, W.D. Kingery, and A.R. Cooper JR, Dissolution in ceramic systems: 11, Dissolution of aluminu, mullite, anorthite, and silica in a calcium–aluminum–silicate slag, J. Am. Ceram. Soc., 47(1964), No. 5, p. 249. doi: 10.1111/j.1151-2916.1964.tb14405.x
    [5]
    K.H. Sandhage and G.J. Yurek, Indirect dissolution of sapphire into calcia–magnesia–alumina–silica melts: Electron microprobe analysis of the dissolution process, J. Am. Ceram. Soc., 73(1990), No. 12, p. 3643. doi: 10.1111/j.1151-2916.1990.tb04270.x
    [6]
    Y.J. Park, Y.M. Cho, W.Y. Cha, and Y.B. Kang, Dissolution kinetics of alumina in molten CaO–Al2O3–Fe tO–MgO–SiO2 oxide representing the RH slag in steelmaking process, J. Am. Ceram. Soc., 103(2020), No. 3, p. 2210. doi: 10.1111/jace.16879
    [7]
    S. Sridhar and A.W. Cramb, Kinetics of Al2O3 dissolution in CaO–MgO–SiO2–Al2O3 slags: In Situ observations and analysis, Metall. Mater. Trans. B, 31(2000), No. 2, p. 406. doi: 10.1007/s11663-000-0059-2
    [8]
    J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants, In situ observation of the direct and indirect dissolution of MgO particles in CaO–Al2O3–SiO2-based slags, J. Eur. Ceram. Soc., 27(2007), No. 4, p. 1961. doi: 10.1016/j.jeurceramsoc.2006.05.107
    [9]
    J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, and Y.B. Kang, In situ observation of the dissolution phenomena of SiC particle in CaO–SiO2–MnO slag, J. Eur. Ceram. Soc., 30(2010), No. 15, p. 3181. doi: 10.1016/j.jeurceramsoc.2010.07.020
    [10]
    Y.M. Lee, J.K. Yang, D.J. Min, and J.H. Park, Mechanism of MgO dissolution in MgF2–CaF2–MF (M = Li or Na) melts: Kinetic analysis via in situ high temperature confocal scanning laser microscopy (HT-CSLM), Ceram. Int., 45(2019), No. 16, p. 20251. doi: 10.1016/j.ceramint.2019.06.298
    [11]
    M. Sharma and N. Dogan, Dissolution behavior of aluminum titanate inclusions in steelmaking slags, Metall. Mater. Trans. B, 51(2020), No. 2, p. 570. doi: 10.1007/s11663-019-01762-2
    [12]
    K.Y. Miao, A. Haas, M. Sharma, W.Z. Mu, and N. Dogan, In situ observation of calcium aluminate inclusions dissolution into steelmaking slag, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1612. doi: 10.1007/s11663-018-1303-y
    [13]
    T.L. Tian, Y.Z. Zhang, H.H. Zhang, K.X. Zhang, J. Li, and H. Wang, Dissolution behavior of SiO2 in the molten blast furnace slags, Int. J. Appl. Ceram. Technol., 16(2019), No. 3, p. 1078. doi: 10.1111/ijac.13120
    [14]
    L. Zhang, W.L. Wang, L. Zhang, J. Zeng, and X. Gao, A comparison study on the dissolution mechanism of Al2O3 inclusion on fluorine-bearing and fluorine-free molten mold fluxes, Ceram. Int., 49(2023), No. 16, p. 27176. doi: 10.1016/j.ceramint.2023.05.262
    [15]
    L. Gou, H. Liu, Y. Ren, and L.F. Zhang, Concept of inclusion capacity of slag and its application on the dissolution of Al2O3, ZrO2 and SiO2 inclusions in CaO–Al2O3–SiO2 slag, Metall. Mater. Trans. B, 54(2023), No. 3, p. 1314. doi: 10.1007/s11663-023-02763-y
    [16]
    C.Y. Ren, C.D. Huang, L.F. Zhang, and Y. Ren, In situ observation of the dissolution kinetics of Al2O3 particles in CaO–Al2O3–SiO2 slags using laser confocal scanning microscopy, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 345. doi: 10.1007/s12613-021-2347-6
    [17]
    Y. Kim, Y. Kashiwaya, and Y. Chung, Effect of varying Al2O3 contents of CaO–Al2O3–SiO2 slags on lumped MgO dissolution, Ceram. Int., 46(2020), No. 5, p. 6205. doi: 10.1016/j.ceramint.2019.11.088
    [18]
    W.Z. Mu and C.J. Xuan, Phase-field study of dissolution behaviors of different oxide particles into oxide melts, Ceram. Int., 46(2020), No. 10, p. 14949. doi: 10.1016/j.ceramint.2020.03.023
    [19]
    C.J. Xuan and W.Z. Mu, A phase-field model for the study of isothermal dissolution behavior of alumina particles into molten silicates, J. Am. Ceram. Soc., 102(2019), No. 11, p. 6480. doi: 10.1111/jace.16509
    [20]
    J.J. Liu, J. Zou, M.X. Guo, and N. Moelans, Phase field simulation study of the dissolution behavior of Al2O3 into CaO–Al2O3–SiO2 slags, Comput. Mater. Sci., 119(2016), p. 9. doi: 10.1016/j.commatsci.2016.03.034
    [21]
    J. Heulens, B. Blanpain, and N. Moelans, A phase field model for isothermal crystallization of oxide melts, Acta Mater., 59(2011), No. 5, p. 2156. doi: 10.1016/j.actamat.2010.12.016
    [22]
    Z.J. Wang and I. Sohn, A review of in situ observations of crystallization and growth in high temperature oxide melts, JOM, 70(2018), No. 7, p. 1210. doi: 10.1007/s11837-018-2887-z
    [23]
    I. Sohn and R. Dippenaar, In-situ observation of crystallization and growth in high-temperature melts using the confocal laser microscope, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2083. doi: 10.1007/s11663-016-0675-0
    [24]
    D.C. Fu, G.H. Wen, X.Q. Zhu, J.L. Guo, and P. Tang, Modification for prediction model of austenite grain size at surface of microalloyed steel slabs based on in situ observation, J. Iron Steel Res. Int., 28(2021), No. 9, p. 1133. doi: 10.1007/s42243-020-00513-x
    [25]
    Q.R. Tian, G.C. Wang, D.L. Shang, et al. , In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel, Metall. Mater. Trans. B, 49(2018), No. 6, p. 3137. doi: 10.1007/s11663-018-1411-8
    [26]
    Y.G. Wang and C.J. Liu, Agglomeration characteristics of various oxide inclusions in molten steel containing rare earth element under different deoxidation conditions, ISIJ Int., 61(2021), No. 5, p. 1396. doi: 10.2355/isijinternational.ISIJINT-2020-684
    [27]
    W.Z. Mu and C.J. Xuan, Agglomeration mechanism of complex Ti–Al oxides in liquid ferrous alloys considering high-temperature interfacial phenomenon, Metall. Mater. Trans. B, 50(2019), No. 6, p. 2694. doi: 10.1007/s11663-019-01686-x
    [28]
    X.J. Zhao, Z.N. Yang, and F.C. Zhang, In situ observation of the effect of AIN particles on bainitic transformation in a carbide-free medium carbon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 620. doi: 10.1007/s12613-019-1911-9
    [29]
    J. Guo, X.R. Chen, S.W. Han, Y. Yan, and H.J. Guo, Evolution of plasticized MnO–Al2O3–SiO2-based nonmetallic inclusion in 18wt%Cr–8wt%Ni stainless steel and its properties during soaking process, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 328. doi: 10.1007/s12613-019-1945-z
    [30]
    M. Valdez, K. Prapakorn, A.W. Cramb, and S. Sridhar, Dissolution of alumina particles in CaO–Al2O3–SiO2–MgO slags, Ironmaking Steelmaking, 29(2002), No. 1, p. 47. doi: 10.1179/030192302225001965
    [31]
    M. Sharma, W.Z. Mu, and N. Dogan, In situ observation of dissolution of oxide inclusions in steelmaking slags, JOM, 70(2018), No. 7, p. 1220. doi: 10.1007/s11837-018-2908-y
    [32]
    S. Taira, K. Nakashima, and K. Mori, Kinetic behavior of dissolution of sintered alumina into CaO–SiO2–Al2O3 slags, ISIJ Int., 33(1993), No. 1, p. 116. doi: 10.2355/isijinternational.33.116
    [33]
    W.D. Cho and P. Fan, Diffusional dissolution of alumina in various steelmaking slags, ISIJ Int., 44(2004), No. 2, p. 229. doi: 10.2355/isijinternational.44.229
    [34]
    F. Verhaeghe, J. Liu, M. Guo, S. Arnout, B. Blanpain, and P. Wollants, Dissolution and diffusion behavior of Al2O3 in a CaO–Al2O3–SiO2 liquid: An experimental-numerical approach, Appl. Phys. Lett., 91(2007), No. 12.
    [35]
    C.Y. Ren, L.F. Zhang, J. Zhang, S.J. Wu, P. Zhu, and Y. Ren, In situ observation of the dissolution of Al2O3 particles in CaO–Al2O3–SiO2 slags, Metall. Mater. Trans. B, 52(2021), No. 5, p. 3288. doi: 10.1007/s11663-021-02256-w
    [36]
    K.W. Yi, C. Tse, J.H. Park, M. Valdez, A.W. Cramb, and S. Sridhar, Determination of dissolution time of Al2O3 and MgO inclusions in synthetic Al2O3–CaO–MgO slags, Scand. J. Metall., 32(2003), No. 4, p. 177. doi: 10.1034/j.1600-0692.2003.20631.x
    [37]
    A.B. Fox, M.E. Valdez, J. Gisby, R.C. Atwood, P.D. Lee, and S. Sridhar, Dissolution of ZrO2, Al2O3, MgO and MgAl2O4 particles in a B2O3 containing commercial fluoride-free mould slag, ISIJ Int., 44(2004), No. 5, p. 836. doi: 10.2355/isijinternational.44.836
    [38]
    B.J. Monaghan and L. Chen, Effect of changing slag composition on spinel inclusion dissolution, Ironmaking Steelmaking, 33(2006), No. 4, p. 323. doi: 10.1179/174328106X101547
    [39]
    Y. Ren, P. Zhu, C.Y. Ren, N. Liu, and L.F. Zhang, Dissolution of SiO2 inclusions in CaO–SiO2-based slags in situ observed using high-temperature confocal scanning laser microscopy, Metall. Mater. Trans. B, 53(2022), No. 2, p. 682. doi: 10.1007/s11663-021-02401-5
    [40]
    B.J. Monaghan and L. Chen, Dissolution behavior of alumina micro-particles in CaO–SiO2–Al2O3 liquid oxide, J. Non Cryst. Solids, 347(2004), No. 1-3, p. 254. doi: 10.1016/j.jnoncrysol.2004.09.011
    [41]
    G.Y. Hao, Z.Y. Deng, C.X. Wei, and M.Y. Zhu, Degradation behavior of MgO-based refractory by CaO–SiO2–Al2O3–MgO–TiO2 system ladle slags, Metall. Mater. Trans. B, 54(2023), No. 6, p. 3203. doi: 10.1007/s11663-023-02901-6
    [42]
    Y. Wang, J.H. Cho, T.S. Jeong, et al., Evolution of the non-metallic inclusions influenced by slag–metal reactions in Ti-containing ferritic stainless steel, Metall. Mater. Trans. B, 52(2021), No. 6, p. 3986. doi: 10.1007/s11663-021-02314-3
    [43]
    Z.D. Pang, X.W. Lü, Z.M. Yan, C.G. Bai, H.E. Xie, and C. Pan, Viscosity and free running temperature of ultra-high TiO2 bearing blast furnace slag, Iron Steel, 55(2020), No. 8, p. 181.
    [44]
    X.M. Zhang, Z.W. Yan, Z.Y. Deng, and M.Y. Zhu, Effect of TiO2 addition on the melting behaviors of CaO-SiO2-30%Al2O3-5%MgO system refining slags, Metals, 13(2023), No. 2, art. No. 431. doi: 10.3390/met13020431
    [45]
    X.M. Zhang, Z.Y. Deng, Z.W. Yan, C.X. Wei and M.Y. Zhu; Effect of TiO2 addition on the viscosity of ladle refining slags, Metall. Mater. Trans. B, (2024). Doi: 10.1007/s11663-024-03055-9.
    [46]
    M.J. Whelan, On the kinetics of precipitate dissolution, Met. Sci. J., 3(1969), No. 1, p. 95. doi: 10.1179/msc.1969.3.1.95
    [47]
    K.C. Mills and B.J. Keene, Physical properties of BOS slags, Int. Mater. Rev., 32(1987), No. 1, p. 1. doi: 10.1179/095066087790150296
    [48]
    S. Feichtinger, S.K. Michelic, Y.B. Kang, and C. Bernhard, In situ observation of the dissolution of SiO2 particles in CaO–Al2O3–SiO2 slags and mathematical analysis of its dissolution pattern, J. Am. Ceram. Soc., 97(2014), No. 1, p. 316. doi: 10.1111/jace.12665
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(190) PDF Downloads(32) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return