Binghui Hu, Yu Lei, Hang Li, Ziyi Wang, Chao Yu, and Guozheng Kang, Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2827-6
Cite this article as:
Binghui Hu, Yu Lei, Hang Li, Ziyi Wang, Chao Yu, and Guozheng Kang, Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2827-6
Research Article

Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature

+ Author Affiliations
  • Corresponding author:

    Guozheng Kang    E-mail: guozhengkang@swjtu.edu.cn

  • Received: 13 September 2023Revised: 9 December 2023Accepted: 11 January 2024Available online: 12 January 2024
  • The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial–torsional cyclic tests controlled by stress with various loading paths at room temperature (RT). The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed. Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths; multiaxial ratchetting presents strong path dependence, and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional 45° linear loading paths; multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase. Moreover, stress–strain curves show a convex and symmetrical shape in axial/torsional directions. Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles. The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys.
  • loading
  • [1]
    G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
    [2]
    D. Eliezer, E. Aghion, and F.H. Froes, Magnesium science, technology and applications, Adv. Perform. Mater., 5(1998), No. 3, p. 201. doi: 10.1023/A:1008682415141
    [3]
    J.P. Weiler, A review of magnesium die-castings for closure applications, J. Magnes. Alloys, 7(2019), No. 2, p. 297. doi: 10.1016/j.jma.2019.02.005
    [4]
    C.X. Zhang, J.J. Lin, and H.N. Liu, Magnesium-based biodegradable materials for biomedical applications, MRS Adv., 3(2018), No. 40, p. 2359. doi: 10.1557/adv.2018.488
    [5]
    B. Liu, J. Yang, X.Y. Zhang, Q. Yang, J.S. Zhang, and X.Q. Li, Development and application of magnesium alloy parts for automotive OEMs: A review, J. Magnes. Alloys, 11(2023), No. 1, p. 15. doi: 10.1016/j.jma.2022.12.015
    [6]
    R.E. Reed-Hill and W.D. Robertson, Deformation of magnesium single crystals by nonbasal slip, JOM, 9(1957), No. 4, p. 496. doi: 10.1007/BF03397907
    [7]
    J. Zhang and S.P. Joshi, Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium, J. Mech. Phys. Solids, 60(2012), No. 5, p. 945. doi: 10.1016/j.jmps.2012.01.005
    [8]
    P.B. Hirsch and J.S. Lally, The deformation of magnesium single crystals, Philos. Mag., 12(1965), No. 117, p. 595. doi: 10.1080/14786436508218903
    [9]
    R.E. Mises, Mechanics of plastic shape change of crystals, Z. Angew. Math. Mech., 8(2006), No. 3, p. 161.
    [10]
    M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A, 12(1981), No. 3, p. 409. doi: 10.1007/BF02648537
    [11]
    J.B. Lin, W.J. Ren, X.Y. Wang, and L.F. Ma, Tension–compression asymmetry in yield strength and hardening behaviour of as-extruded AZ31 alloy, Mater. Sci. Technol., 32(2016), No. 18, p. 1855. doi: 10.1080/02670836.2016.1149293
    [12]
    C.L. Lv, T.M. Liu, D.J. Liu, S. Jiang, and W. Zeng, Effect of heat treatment on tension–compression yield asymmetry of AZ80 magnesium alloy, Mater. Des., 33(2012), p. 529. doi: 10.1016/j.matdes.2011.04.060
    [13]
    G.Z. Kang, C. Yu, Y.J. Liu, and G.F. Quan, Uniaxial ratchetting of extruded AZ31 magnesium alloy: Effect of mean stress, Mater. Sci. Eng. A, 607(2014), p. 318. doi: 10.1016/j.msea.2014.04.023
    [14]
    Y. Lei, H. Li, Y.J. Liu, Z.Y. Wang, and G.Z. Kang, Experimental study on uniaxial ratchetting-fatigue interaction of extruded AZ31 magnesium alloy with different plastic deformation mechanisms, J. Magnes. Alloys, 11(2023), No. 1, p. 379. doi: 10.1016/j.jma.2021.03.018
    [15]
    L. Wu, A. Jain, D.W. Brown, et al., Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A, Acta Mater., 56(2008), No. 4, p. 688. doi: 10.1016/j.actamat.2007.10.030
    [16]
    J.L. Wu, L. Jin, J. Dong, F.H. Wang, and S. Dong, The texture and its optimization in magnesium alloy, J. Mater. Sci. Technol., 42(2020), p. 175. doi: 10.1016/j.jmst.2019.10.010
    [17]
    Y. Lei, Z.Y. Wang, and G.Z. Kang, Experimental investigation on uniaxial cyclic plasticity of cast AZ91 magnesium alloy, J. Magnes. Alloys, 11(2023), No. 9, p. 3255. doi: 10.1016/j.jma.2021.12.001
    [18]
    C.H. Cáceres, T. Sumitomo, and M. Veidt, Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading–unloading, Acta Mater., 51(2003), No. 20, p. 6211. doi: 10.1016/S1359-6454(03)00444-0
    [19]
    G.Z. Kang, Y.J. Liu, J. Ding, and Q. Gao, Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel: Damage evolution and damage-coupled visco-plastic constitutive model, Int. J. Plast., 25(2009), No. 5, p. 838. doi: 10.1016/j.ijplas.2008.06.004
    [20]
    G.Z. Kang, Y.W. Dong, H. Wang, Y.J. Liu, and X.J. Cheng, Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation, Mater. Sci. Eng. A, 527(2010), No. 21-22, p. 5952. doi: 10.1016/j.msea.2010.06.020
    [21]
    G.Z. Kang, Q. Gao, L.X. Cai, and Y.F. Sun, Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures, Nucl. Eng. Des., 216(2002), No. 1-3, p. 13. doi: 10.1016/S0029-5493(02)00062-6
    [22]
    H.A. Patel, N. Rashidi, D.L. Chen, S.D. Bhole, and A.A. Luo, Cyclic deformation behavior of a super-vacuum die cast magnesium alloy, Mater. Sci. Eng. A, 546(2012), p. 72. doi: 10.1016/j.msea.2012.03.028
    [23]
    H. Zenner and F. Renner, Cyclic material behaviour of magnesium die castings and extrusions, Int. J. Fatigue, 24(2002), No. 12, p. 1255. doi: 10.1016/S0142-1123(02)00042-7
    [24]
    H.A. Patel, D.L. Chen, S.D. Bhole, and K. Sadayappan, Cyclic deformation and twinning in a semi-solid processed AZ91D magnesium alloy, Mater. Sci. Eng. A, 528(2010), No. 1, p. 208. doi: 10.1016/j.msea.2010.09.016
    [25]
    Z.M. Li, A.A. Luo, Q.G. Wang, H. Zou, J.C. Dai, and L.M. Peng, Fatigue characteristics of sand-cast AZ91D magnesium alloy, J. Magnes. Alloys, 5(2017), No. 1, p. 1. doi: 10.1016/j.jma.2017.03.001
    [26]
    Z. Liu, H.T. Ji, L. Lin, L.J. Chen, W. Wu, and L. Yang, Cyclic deformation behaviour and potential automobile application of magnesium die casting alloys AZ91 and AM50, Mater. Sci. Forum, 539-543(2007), p. 1626. doi: 10.4028/www.scientific.net/MSF.539-543.1626
    [27]
    G.Z. Kang, Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application, Int. J. Fatigue, 30(2008), No. 8, p. 1448. doi: 10.1016/j.ijfatigue.2007.10.002
    [28]
    G.Z. Kang, Q.H. Kan, L.M. Qian, and Y.J. Liu, Ratchetting deformation of super-elastic and shape-memory NiTi alloys, Mech. Mater., 41(2009), No. 2, p. 139. doi: 10.1016/j.mechmat.2008.09.001
    [29]
    Y.C. Lin, X.M. Chen, and G. Chen, Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation, J. Alloys Compd., 509(2011), No. 24, p. 6838. doi: 10.1016/j.jallcom.2011.03.129
    [30]
    J.X. Zhang, Q. Yu, Y.Y. Jiang, and Q.Z. Li, An experimental study of cyclic deformation of extruded AZ61A magnesium alloy, Int. J. Plast., 27(2011), No. 5, p. 768. doi: 10.1016/j.ijplas.2010.09.004
    [31]
    S. Biswas, B. Beausir, L.S. Toth, and S. Suwas, Evolution of texture and microstructure during hot torsion of a magnesium alloy, Acta Mater., 61(2013), No. 14, p. 5263. doi: 10.1016/j.actamat.2013.05.018
    [32]
    X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast., 23(2007), No. 1, p. 44. doi: 10.1016/j.ijplas.2006.03.005
    [33]
    F.H. Wang, M.L. Feng, Y.Y. Jiang, J. Dong, and Z.Y. Zhang, Cyclic shear deformation and fatigue of extruded Mg–Gd–Y magnesium alloy, J. Mater. Sci. Technol., 39(2020), p. 74. doi: 10.1016/j.jmst.2019.08.025
    [34]
    X.D. Zhang, K.C. Zhou, H.W. Wang, et al., On the cyclic torsion behavior of extruded AZ61A magnesium alloy tube, Int. J. Fatigue, 174(2023), art. No. 107704. doi: 10.1016/j.ijfatigue.2023.107704
    [35]
    J. Albinmousa, H. Jahed, and S. Lambert, Cyclic behaviour of wrought magnesium alloy under multiaxial load, Int. J. Fatigue, 33(2011), No. 8, p. 1127. doi: 10.1016/j.ijfatigue.2011.01.009
    [36]
    H. Jahed and J. Albinmousa, Multiaxial behaviour of wrought magnesium alloys–A review and suitability of energy-based fatigue life model, Theor. Appl. Fract. Mech., 73(2014), p. 97. doi: 10.1016/j.tafmec.2014.08.004
    [37]
    H. Li, G.Z. Kang, Y.J. Liu, and H. Jiang, Non-proportionally multiaxial cyclic deformation of AZ31 magnesium alloy: Experimental observations, Mater. Sci. Eng. A, 671(2016), p. 70. doi: 10.1016/j.msea.2016.06.043
    [38]
    A. Gryguć, S.B. Behravesh, H. Jahed, M. Wells, B. Williams, and X. Su, Multiaxial fatigue and cracking orientation of forged AZ80 magnesium alloy, Procedia Struct. Integr., 25(2020), p. 486. doi: 10.1016/j.prostr.2020.04.055
    [39]
    S. Begum, D. Chen, S. Xu, and A. Luo, Low cycle fatigue properties of an extruded AZ31 magnesium alloy, Int. J. Fatigue, 31(2009), No. 4, p. 726. doi: 10.1016/j.ijfatigue.2008.03.009
    [40]
    Y. Xiong, Q. Yu, and Y.Y. Jiang, Multiaxial fatigue of extruded AZ31B magnesium alloy, Mater. Sci. Eng. A, 546(2012), p. 119. doi: 10.1016/j.msea.2012.03.039
    [41]
    S. Bentachfine, G. Pluvinage, L.S. Toth, and Z. Azari, Biaxial low cycle fatigue under non-proportional loading of a magnesium–lithium alloy, Eng. Fract. Mech., 54(1996), No. 4, p. 513. doi: 10.1016/0013-7944(95)00223-5
    [42]
    N.T. Nguyen, O.S. Seo, C.A. Lee, M.G. Lee, J.H. Kim, and H.Y. Kim, Mechanical behavior of AZ31B Mg alloy sheets under monotonic and cyclic loadings at room and moderately elevated temperatures, Materials, 7(2014), No. 2, p. 1271. doi: 10.3390/ma7021271
    [43]
    H. Li, G.Z. Kang, C. Yu, and Y.J. Liu, Experimental investigation on temperature-dependent uniaxial ratchetting of AZ31B magnesium alloy, Int. J. Fatigue, 120(2019), p. 33. doi: 10.1016/j.ijfatigue.2018.10.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Share Article

    Article Metrics

    Article Views(194) PDF Downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return