留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2014年  第21卷  第12期

显示方式:
Primary beneficiation of tantalite using magnetic separation and acid leaching
M. Nete, F. Koko, T. Theron, W. Purcell, J. T. Nel
2014, 21(12): 1153-1159. doi: 10.1007/s12613-014-1022-6
摘要:
Primary beneficiation was successfully performed prior to dissolution of manganotantalite (sample A) and ferrotantalite (sample C) samples obtained from two different mines in the Naquissupa area, Mozambique. Magnetic separation removed the majority of iron and titanium, whereas H2SO4 leaching removed a large portion of thorium and uranium in these samples. Analytical results indicated that 64.14wt% and 72.04wt% of the total Fe and Ti, respectively, and ~2wt% each of Nb2O5 and Ta2O5 were removed from sample C (ferrotantalite) using the magnetic separation method, whereas only 9.64wt% and 8.66wt% of total Fe2O3 and TiO2, respectively, and ~2wt% each of Nb2O5 and Ta2O5 were removed from sample A (manganotantalite). A temperature of 50°C and a leaching time of 3 h in the presence of concentrated H2SO4 were observed to be the most appropriate leaching conditions for removal of radioactive elements from the tantalite ores. The results obtained for sample A under these conditions indicated that 64.14wt% U3O8 and 60.77wt% ThO2 were leached into the acidic solution, along with 4.45wt% and 0.99wt% of Nb2O5 and Ta2O5, respectively.
Desulfurization ability of refining slag with medium basicity
Hui-xiang Yu, Xin-hua Wang, Mao Wang, Wan-jun Wang
2014, 21(12): 1160-1166. doi: 10.1007/s12613-014-1023-5
摘要:
The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5–5.0; 20wt%–25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (CS) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (LS). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5–5.0 and the Al2O3 content in the range of 20wt%–25wt% has high activity of CaO (aCaO), with no deterioration of CS compared with conventional desulfurization slag. The measured LS between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5–5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.
Effect of acicular ferrite on banded structures in low-carbon microalloyed steel
Lei Shi, Ze-sheng Yan, Yong-chang Liu, Xu Yang, Cheng Zhang, Hui-jun Li
2014, 21(12): 1167-1174. doi: 10.1007/s12613-014-1024-4
摘要:
The effect of acicular ferrite (AF) on banded structures in low-carbon microalloyed steel with Mn segregation during both isothermal transformation and continuous cooling processes was studied by dilatometry and microscopic observation. With respect to the isothermal transformation process, the specimen isothermed at 550°C consisted of AF in Mn-poor bands and martensite in Mn-rich bands, whereas the specimen isothermed at 450°C exhibited two different morphologies of AF that appeared as bands. At a continuous cooling rate in the range of 4 to 50°C/s, a mixture of AF and martensite formed in both segregated bands, and the volume fraction of martensite in Mn-rich bands was always higher than that in Mn-poor bands. An increased cooling rate resulted in a decrease in the difference of martensite volume fraction between Mn-rich and Mn-poor bands and thereby leaded to less distinct microstructural banding. The results show that Mn segregation and cooling rate strongly affect the formation of AF-containing banded structures. The formation mechanism of microstructural banding was also discussed.
Effects of magnetic fields on Fe-Si composite electrodeposition
Qiong Long, Yun-bo Zhong, Huai Wang, Tian-xiang Zheng, Jun-feng Zhou, Zhong-ming Ren
2014, 21(12): 1175-1186. doi: 10.1007/s12613-014-1025-3
摘要:
Coatings containing Fe-Si particles were electrodeposited on 3.0wt% Si steel sheets under magnetic fields. The effects of magnetic flux density (MFD), electrode arrangement and current density on the surface morphology, the silicon content in the coatings and the cathode current efficiency were investigated. When a magnetic field was applied parallel to the current and when the MFD was less than 0.5 T, numerous needle-like structures appeared on the coating surface. With increasing MFD, the needle-like structures weakened and were transformed into dome-shaped structures. Meanwhile, compared to results obtained in the absence of a magnetic field, the silicon content in the coatings significantly increased as the MFD was increased for all of the samples obtained using a vertical electrode system. However, in the case of an aclinic electrode system, the silicon content decreased. Furthermore, the cathode current efficiency was considerably diminished when a magnetic field was applied. A possible mechanism for these phenomena was discussed.
Fracture toughness and fracture behavior of SA508-III steel at different temperatures
Jia-hua Liu, Lei Wang, Yang Liu, Xiu Song, Jiong Luo, Dan Yuan
2014, 21(12): 1187-1195. doi: 10.1007/s12613-014-1026-2
摘要:
The fracture toughness of SA508-III steel was studied in the temperature range from room temperature to 320°C using the J-integral method. The fracture behavior of the steel was also investigated. It was found that the conditional fracture toughness (JQ) of the steel first decreased and then increased with increasing test temperature. The maximum and minimum values of JQ were 517.4 kJ/m2 at 25°C and 304.5 kJ/m2 at 180°C, respectively. Dynamic strain aging (DSA) was also observed to occur when the temperature exceeded 260°C with a certain strain rate. Both the dislocation density and the number of small dislocation cells effectively increased because of the occurrence of DSA; as a consequence, crack propagation was more strongly inhibited in the steel. Simultaneously, an increasing number of fine carbides precipitated under high stress at temperatures greater than 260°C. Thus, the deformation resistance of the steel was improved and the JQ was enhanced.
Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel
Yang Li, Gui-yong Xiao, Lu-bin Chen, Yu-peng Lu
2014, 21(12): 1196-1204. doi: 10.1007/s12613-014-1027-1
摘要:
Acoustic emission (AE) monitored tensile tests were performed on 35CrMnSiA steel subjected to different heat treatments. The results showed that quenching and partitioning (Q-P) heat treatments enhanced the combined mechanical properties of high strength and high ductility for commercial 35CrMnSiA steel, as compared with traditional heat treatments such as quenching and tempering (Q-T) and austempering (AT). AE signals with high amplitude and high energy were produced during the tensile deformation of 35CrMnSiA steel with retained austenite (RA) in the microstructure (obtained via Q-P and AT heat treatments) due to an austenite-to-martensite phase transformation. Moreover, additional AE signals would not appear again and the mechanical properties would degenerate to a lower level once RA degenerated by tempering for the Q-P treated steel.
Microstructural evolution of ECAPed 1050 alloy under magnetic annealing
Yi-heng Cao, Pin-feng Jia, Kang Wang, Li-zi He, Ping Wang, Jian-zhong Cui
2014, 21(12): 1205-1214. doi: 10.1007/s12613-014-1028-0
摘要:
Hardness and microstructure evolutions in 1050 aluminum alloy prepared by equal-channel angular pressing (ECAP) were investigated by hardness testing, optical microscopy, and transmission electron microscopy after samples were annealed at different temperatures for 1 h both in the absence and presence of a 12-T magnetic field. The results showed that the hardness of samples after magnetic annealing were lower than that of samples after normal annealing at 150–250°C, but it was higher than that of samples after normal annealing at >250°C. During annealing, the rate of softening was faster, and the grains were more homogeneous in 8-ECAPed samples than in 2-ECAPed samples. A rapid grain growth occurred when 2-ECAPed samples were annealed at high temperature (≥300°C). The magnetic field enhanced the mobility of dislocations and grain boundaries. A more homogeneous grain size was observed in samples prepared under an applied magnetic field.
Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization
Wen-xiang Shu, Jun-cheng Liu, Long-gang Hou, Hua Cui, Jun-tao Liu, Ji-shan Zhang
2014, 21(12): 1215-1221. doi: 10.1007/s12613-014-1029-z
摘要:
The microstructural evolution and phase transformations of a high-alloyed Al-Zn-Mg-Cu alloy (Al-8.59Zn-2.00Mg-2.44Cu, wt%) during homogenization were investigated. The results show that the as-cast microstructure mainly contains dendritic α(Al), non-equilibrium eutectics (α(Al) + Mg(Zn,Al,Cu)2), and the θ (Al2Cu) phase. Neither the T (Al2Mg3Zn3) phase nor the S (Al2CuMg) phase was found in the as-cast alloy. The calculated phase components according to the Scheil model are in agreement with experimental results. During homogenization at 460°C, all of the θ phase and most of the Mg(Zn,Al,Cu)2 phase were dissolved, whereas a portion of the Mg(Zn,Al,Cu)2 phase was transformed into the S phase. The type and amount of residual phases remaining after homogenization at 460°C for 168 h and by a two-step homogenization process conducted at 460°C for 24 h and 475°C for 24 h (460°C/24 h + 475°C/24 h) are in good accord with the calculated phase diagrams. It is concluded that the Al-8.59Zn-2.00Mg-2.44Cu alloy can be homogenized adequately under the 460°C/24 h + 475°C/24 h treatment.
Strength and elongation of spray formed Al-Si-Pb alloys
Aruna Tomar, Rashmi Mittal, Devendra Singh
2014, 21(12): 1222-1227. doi: 10.1007/s12613-014-1030-6
摘要:
The strength and elongation to fracture of spray deposited Al-Si-Pb alloys were studied as a function of lead content, silicon content, and distance from the centre to periphery of the deposit. It is found that the ultimate tensile strength, proof stress and elongation to fracture decrease, linearly and exponentially, with the increase in lead content and porosity of the deposit, respectively. Both the strengths and elongation to fracture linearly increase with increasing distance from the centre to periphery of the deposit. The ultimate tensile strength and proof stress are higher at a higher silicon content and they have a linear relationship with the hardness of the deposit.
In situ fabrication and properties of AlN dispersion strengthened 2024 aluminum alloy
Wei-wei Yang, Zhi-meng Guo, Lei-chen Guo, Hui-qin Cao, Ji Luo, An-ping Ye
2014, 21(12): 1228-1232. doi: 10.1007/s12613-014-1031-5
摘要:
Nanoscaled aluminum nitride (AlN) dispersion strengthened 2024 aluminum alloy was fabricated using a novel approach in which Al-Mg-Cu compacts were partially nitrided in flowing nitrogen gas. The compacts were subsequently consolidated by sintering and hot extrusion. The microstructure and mechanical properties of the material were preliminarily investigated. Transmission electron microscopy and X-ray diffraction results revealed that AlN particles were generated by the nitridation of Al-Mg-Cu compacts. The material exhibited excellent mechanical properties after hot extrusion and heat treatment. The ultimate tensile and yield strengths of the extruded samples containing 8.92vol% AlN with the T6 heat treatment were 675 and 573 MPa, respectively.
Preparation and characterization of regenerated MgO-CaO refractory bricks sintered under different atmospheres
Gui-bo Qiu, Chang-sheng Yue, Xiang Li, Min Guo, Mei Zhang
2014, 21(12): 1233-1240. doi: 10.1007/s12613-014-1032-4
摘要:
Regenerated MgO-CaO brick samples containing 80wt%, 70wt%, and 60wt% MgO were prepared using spent MgO-CaO bricks and fused magnesia as raw materials and paraffin as a binder. The bricks were sintered at 1873 K for 2 h under an air atmosphere and under an isolating system. The microstructure, mechanical properties at room temperature, and hydration resistance of the regenerated samples were measured and compared. The results indicated that the isolating sintering generated a strongly reducing atmosphere as a result of the incomplete combustion of paraffin, and the partial oxygen pressure was approximately 6.68 × 10−7 Pa. The properties of the regenerated bricks sintered under air conditions were all higher than those of the bricks sintered under a reducing atmosphere. The deterioration of the bricks was a result of MgO reduction and a decrease in the amount of liquid phase formed during sintering under a reducing atmosphere.
Comparative study of 2mol% Li- and Mn-substituted lead-free potassium sodium niobate ceramics
Asha Dahiya, O. P. Thakur, J. K. Juneja, Sangeeta Singh, Dipti
2014, 21(12): 1241-1246. doi: 10.1007/s12613-014-1033-3
摘要:
The effect of Li and Mn substitution on the dielectric, ferroelectric and piezoelectric properties of lead free K0.5Na0.5NbO3 (KNN) was investigated. Samples were prepared using a conventional solid state reaction method. The sintering temperature for all the samples was 1050°C. The optimum doping concentration for the enhancement of different properties without the introduction of any other co-dopants such as Ti, Sb, and La was investigated. X-ray diffraction analysis confirmed that all the samples crystallize in a single phase perovskite structure. The dielectric properties were investigated as a function of temperature and applied electric field frequency. Compared with Li-substituted KNN (KLNN), Mn-substituted KNN (KMNN) exhibited a higher dielectric constant ɛmax (i.e., 4840) at its critical transition temperature Tc (i.e., 421°C) along with a lower value of tangent loss at 10 kHz and greater values of saturation polarisation Ps (i.e., 20.14 μC/cm2) and remnant polarisation Pr (i.e., 15.48 μC/cm2). The piezoelectric constant (d33) of KMNN was 178 pC/N, which is comparable to that of lead-based hard ceramics. The results presented herein suggest that B-site or Mn substitution at the optimum concentration results in good enhancement of different properties required for materials used in memory devices and other applications.
Crystallization behavior of plasma-sprayed lanthanide magnesium hexaaluminate coatings
Liang-liang Huang, Hui-min Meng, Jing Tang
2014, 21(12): 1247-1253. doi: 10.1007/s12613-014-1034-2
摘要:
LaMgAl11O19 thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying. The crystallization behavior of the coatings and the synthesis mechanism of LaMgAl11O19 powders were researched. The results showed that the plasma-sprayed coatings contained some amorphous phase, and LaMgAl11O19 powders were partially decomposed into Al2O3, LaAlO3, and MgAl2O4 in the plasma spraying process. The amorphous phase was recrystallized at a temperature of approximately 1174.9°C, at which level the decomposed Al2O3, LaAlO3, and MgAl2O4 reacted again. The resynthesis temperature of LaMgAl11O19 in the plasma-sprayed coatings was lower than that of LaMgAl11O19 in the original raw powders. The synthesis mechanism of LaMgAl11O19 powders can be summarized as follows: during the first part of the overall reaction, La2O3 reacts with Al2O3 to form LaAlO3 at approximately 900°C, and then LaAlO3 further reacts with Al2O3 and MgAl2O4 to produce LaMgAl11O19 at approximately 1200°C.
Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings
Chuan-hui Chen, Yang Bai, Xu-chu Ye
2014, 21(12): 1254-1262. doi: 10.1007/s12613-014-1035-1
摘要:
This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.