The unusual glass-forming ability (GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported. The bulk metallic glass rod with a diameter of 25 mm was successfully synthesized using copper mold casting for the Zr48Cu36Ag8Al8 alloy. High GFA of this alloy was found to be related to a large supercooled liquid region and a quaternary eutectic point with low melting temperature. The bulk metallic glass matrix composites were prepared by introducing extra Ta particles into the Zr48Cu36Ag8Al8 melt. The composites consist of Ta particles homogenously distributed in the Zr48Cu36Al8Ag8 metallic glass matrix. The optimum content of Ta powder is 10at% for the composite with the highest plasticity, which shows a plastic strain of 31%.
The unusual glass-forming ability (GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported. The bulk metallic glass rod with a diameter of 25 mm was successfully synthesized using copper mold casting for the Zr48Cu36Ag8Al8 alloy. High GFA of this alloy was found to be related to a large supercooled liquid region and a quaternary eutectic point with low melting temperature. The bulk metallic glass matrix composites were prepared by introducing extra Ta particles into the Zr48Cu36Ag8Al8 melt. The composites consist of Ta particles homogenously distributed in the Zr48Cu36Al8Ag8 metallic glass matrix. The optimum content of Ta powder is 10at% for the composite with the highest plasticity, which shows a plastic strain of 31%.