留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 18 Issue 1
Feb.  2011
数据统计

分享

计量
  • 文章访问数:  250
  • HTML全文浏览量:  57
  • PDF下载量:  16
  • 被引次数: 0
Tong Wen, Li Wei, Xia Chen, and Chun-lei Pei, Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process, Int. J. Miner. Metall. Mater., 18(2011), No. 1, pp. 70-76. https://doi.org/10.1007/s12613-011-0402-4
Cite this article as:
Tong Wen, Li Wei, Xia Chen, and Chun-lei Pei, Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process, Int. J. Miner. Metall. Mater., 18(2011), No. 1, pp. 70-76. https://doi.org/10.1007/s12613-011-0402-4
引用本文 PDF XML SpringerLink

Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process

  • 通讯作者:

    Tong Wen    E-mail: tonywen68@hotmail.com

  • An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration (with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31. The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared. It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects: the softening effect which reduces the flow resistance and improves the plasticity, and the hardening effect which decreases the formability. When a lower amplitude or vibration energy is applied to the tensile sample, the softening effect dominates, leading to a decrease of AZ31 deformation resistance with an increase of formability. Under the application of a high-vibrating amplitude, the hardening effect dominates, resulting in the decline of plasticity and brittle fracture of the samples.
  • Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process

    + Author Affiliations
    • An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration (with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31. The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared. It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects: the softening effect which reduces the flow resistance and improves the plasticity, and the hardening effect which decreases the formability. When a lower amplitude or vibration energy is applied to the tensile sample, the softening effect dominates, leading to a decrease of AZ31 deformation resistance with an increase of formability. Under the application of a high-vibrating amplitude, the hardening effect dominates, resulting in the decline of plasticity and brittle fracture of the samples.
    • loading

    Catalog


    • /

      返回文章
      返回