Li-jun Wang, Qing-wu Cai, Hui-bin Wu, and Wei Yu, Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels, Int. J. Miner. Metall. Mater., 18(2011), No. 5, pp. 543-550. https://doi.org/10.1007/s12613-011-0475-0
Cite this article as:
Li-jun Wang, Qing-wu Cai, Hui-bin Wu, and Wei Yu, Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels, Int. J. Miner. Metall. Mater., 18(2011), No. 5, pp. 543-550. https://doi.org/10.1007/s12613-011-0475-0
Li-jun Wang, Qing-wu Cai, Hui-bin Wu, and Wei Yu, Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels, Int. J. Miner. Metall. Mater., 18(2011), No. 5, pp. 543-550. https://doi.org/10.1007/s12613-011-0475-0
Citation:
Li-jun Wang, Qing-wu Cai, Hui-bin Wu, and Wei Yu, Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels, Int. J. Miner. Metall. Mater., 18(2011), No. 5, pp. 543-550. https://doi.org/10.1007/s12613-011-0475-0
Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), and other experimental methods. The results show that Si can suppress temper embrittlement, improve temper resistance, and hinder the decomposition of retained austenite. Reversed austenite appears gradually with the increase of Si content during tempering. Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite. Si and C atoms are mutually exclusive in lath bainite, while they attract each other in austenite. ɛ-carbides are found in 1.8wt% Si steel tempered at 250℃, and they get coarsened obviously when tempered at 400℃, leading to temper embrittlement. Not ɛ-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel, which can be inferred as cementites and composite compounds. Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.
Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), and other experimental methods. The results show that Si can suppress temper embrittlement, improve temper resistance, and hinder the decomposition of retained austenite. Reversed austenite appears gradually with the increase of Si content during tempering. Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite. Si and C atoms are mutually exclusive in lath bainite, while they attract each other in austenite. ɛ-carbides are found in 1.8wt% Si steel tempered at 250℃, and they get coarsened obviously when tempered at 400℃, leading to temper embrittlement. Not ɛ-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel, which can be inferred as cementites and composite compounds. Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.