留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 18 Issue 5
Oct.  2011
数据统计

分享

计量
  • 文章访问数:  261
  • HTML全文浏览量:  67
  • PDF下载量:  9
  • 被引次数: 0
Hong-tao Gao, Yuan-yuan Liu, Cui-hong Ding, Dong-mei Dai, and Guang-jun Liu, Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities, Int. J. Miner. Metall. Mater., 18(2011), No. 5, pp. 606-614. https://doi.org/10.1007/s12613-011-0485-y
Cite this article as:
Hong-tao Gao, Yuan-yuan Liu, Cui-hong Ding, Dong-mei Dai, and Guang-jun Liu, Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities, Int. J. Miner. Metall. Mater., 18(2011), No. 5, pp. 606-614. https://doi.org/10.1007/s12613-011-0485-y
引用本文 PDF XML SpringerLink

Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities

  • 通讯作者:

    Hong-tao Gao    E-mail: gaohongtao@gmail.com

  • Nitrogen and sulfur doped titanium dioxide photocatalysts were prepared by the sol-gel method. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-visible diffuse reflectance spectra (DRS). Photocatalytic activities of the samples were investigated on the degradation of methyl orange (MO). The effect of the dopants on the electronic structure of TiO2 was studied by the first-principles calculations based on the density functional theory (DFT). The orbital hybridization resulted in energy gap narrowing and electronic delocalization in the crystal of doped TiO2. Mobile electrons of varied energetic states could offer enhanced electron transfer, together with optical absorption improvement. The results show that the doping elements of N and S play a cooperative role in the modification of electronic structure, which enhances the photocatalytic performance. The experimentally observed absorption edges of N-doped TiO2, S-doped TiO2, and N, S-codoped TiO2 are 420, 413, and 429 nm, respectively, which can be explained by the theoretical calculation results.
  • Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities

    + Author Affiliations
    • Nitrogen and sulfur doped titanium dioxide photocatalysts were prepared by the sol-gel method. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-visible diffuse reflectance spectra (DRS). Photocatalytic activities of the samples were investigated on the degradation of methyl orange (MO). The effect of the dopants on the electronic structure of TiO2 was studied by the first-principles calculations based on the density functional theory (DFT). The orbital hybridization resulted in energy gap narrowing and electronic delocalization in the crystal of doped TiO2. Mobile electrons of varied energetic states could offer enhanced electron transfer, together with optical absorption improvement. The results show that the doping elements of N and S play a cooperative role in the modification of electronic structure, which enhances the photocatalytic performance. The experimentally observed absorption edges of N-doped TiO2, S-doped TiO2, and N, S-codoped TiO2 are 420, 413, and 429 nm, respectively, which can be explained by the theoretical calculation results.
    • loading

    Catalog


    • /

      返回文章
      返回