留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 18 Issue 6
Dec.  2011
数据统计

分享

计量
  • 文章访问数:  309
  • HTML全文浏览量:  76
  • PDF下载量:  17
  • 被引次数: 0
H. Naderi, M. Abdollahy, N. Mostoufi, M. J. Koleini, S. A. Shojaosadati, and Z. Manafi, Kinetics of chemical leaching of chalcopyrite from low grade copper ore: behavior of different size fractions, Int. J. Miner. Metall. Mater., 18(2011), No. 6, pp. 638-645. https://doi.org/10.1007/s12613-011-0489-7
Cite this article as:
H. Naderi, M. Abdollahy, N. Mostoufi, M. J. Koleini, S. A. Shojaosadati, and Z. Manafi, Kinetics of chemical leaching of chalcopyrite from low grade copper ore: behavior of different size fractions, Int. J. Miner. Metall. Mater., 18(2011), No. 6, pp. 638-645. https://doi.org/10.1007/s12613-011-0489-7
引用本文 PDF XML SpringerLink

Kinetics of chemical leaching of chalcopyrite from low grade copper ore: behavior of different size fractions

  • 通讯作者:

    M. Abdollahy    E-mail: minmabd@modares.ac.ir

  • The kinetics of the chemical leaching of copper from low grade ore in ferric sulfate media was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant oxidation-reduction potential (Eh), pH values, and temperature. The main copper mineral was chalcopyrite. About 40% of Cu recovery is obtained after 7 d of reactor leaching at 85℃ using -0.5 mm size fraction, while the same recovery is obtained at 75℃ after 24 d. Also, about 23% of Cu recovery is obtained after 60 d of column leaching for +4–-8 mm size fraction whereas the Cu recovery is as low as about 15% for +8–-12.7 and +12.7–-25 mm size fractions. A 4-stage model for chalcopyrite dissolution was used to explain the observed dissolution behaviors. The results show that thick over-layers of sulphur components cause the parabolic behavior of chalcopyrite dissolution and the precipitation of Fe3+ plays the main role in chalcopyrite passivation. In the case of coarse particles, transformation from one stage to another takes a longer time, thus only two stages including the initial reaction on fresh surfaces and S0 deposition are observed.
  • Kinetics of chemical leaching of chalcopyrite from low grade copper ore: behavior of different size fractions

    + Author Affiliations
    • The kinetics of the chemical leaching of copper from low grade ore in ferric sulfate media was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant oxidation-reduction potential (Eh), pH values, and temperature. The main copper mineral was chalcopyrite. About 40% of Cu recovery is obtained after 7 d of reactor leaching at 85℃ using -0.5 mm size fraction, while the same recovery is obtained at 75℃ after 24 d. Also, about 23% of Cu recovery is obtained after 60 d of column leaching for +4–-8 mm size fraction whereas the Cu recovery is as low as about 15% for +8–-12.7 and +12.7–-25 mm size fractions. A 4-stage model for chalcopyrite dissolution was used to explain the observed dissolution behaviors. The results show that thick over-layers of sulphur components cause the parabolic behavior of chalcopyrite dissolution and the precipitation of Fe3+ plays the main role in chalcopyrite passivation. In the case of coarse particles, transformation from one stage to another takes a longer time, thus only two stages including the initial reaction on fresh surfaces and S0 deposition are observed.
    • loading

    Catalog


    • /

      返回文章
      返回