留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 18 Issue 6
Dec.  2011
数据统计

分享

计量
  • 文章访问数:  326
  • HTML全文浏览量:  86
  • PDF下载量:  11
  • 被引次数: 0
Shu-bin Ren, Xiao-yu Shen, Xuan-hui Qu, and Xin-bo He, Effect of Mg and Si on infiltration behavior of Al alloys pressureless infiltration into porous SiCp preforms, Int. J. Miner. Metall. Mater., 18(2011), No. 6, pp. 703-708. https://doi.org/10.1007/s12613-011-0500-3
Cite this article as:
Shu-bin Ren, Xiao-yu Shen, Xuan-hui Qu, and Xin-bo He, Effect of Mg and Si on infiltration behavior of Al alloys pressureless infiltration into porous SiCp preforms, Int. J. Miner. Metall. Mater., 18(2011), No. 6, pp. 703-708. https://doi.org/10.1007/s12613-011-0500-3
引用本文 PDF XML SpringerLink

Effect of Mg and Si on infiltration behavior of Al alloys pressureless infiltration into porous SiCp preforms

  • 通讯作者:

    Shu-bin Ren    E-mail: sbren@sohu.com

  • The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with time as the Al alloys infiltrate into SiCp preforms at different temperatures. The results show that infiltration of SiCp preforms by Al melt is a thermal activation process and there is an incubation period before the infiltration becomes stable. With the increase of Mg content in the Al alloys from 0wt% to 8wt%, the infiltration will become much easier, the incubation period becomes shorter and the infiltration rate is faster, but these effects are not obvious when the Mg content is higher than 8wt%. As for Si addition to the Al alloys, it has no obvious effect on the incubation period, but the infiltration rate increases markedly with the increase of Si content from 0wt% to 12wt% and the rate has no obvious change when the content is bigger than 12wt%. The effect of Mg and Si on the incubation period is related to the infiltration mechanism of Al pressureless infiltration into SiCp preforms and their impact on the infiltration rate is a combined result from viscosity and surface tension of Al melt and SiC-Al wetting ability.
  • Effect of Mg and Si on infiltration behavior of Al alloys pressureless infiltration into porous SiCp preforms

    + Author Affiliations
    • The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with time as the Al alloys infiltrate into SiCp preforms at different temperatures. The results show that infiltration of SiCp preforms by Al melt is a thermal activation process and there is an incubation period before the infiltration becomes stable. With the increase of Mg content in the Al alloys from 0wt% to 8wt%, the infiltration will become much easier, the incubation period becomes shorter and the infiltration rate is faster, but these effects are not obvious when the Mg content is higher than 8wt%. As for Si addition to the Al alloys, it has no obvious effect on the incubation period, but the infiltration rate increases markedly with the increase of Si content from 0wt% to 12wt% and the rate has no obvious change when the content is bigger than 12wt%. The effect of Mg and Si on the incubation period is related to the infiltration mechanism of Al pressureless infiltration into SiCp preforms and their impact on the infiltration rate is a combined result from viscosity and surface tension of Al melt and SiC-Al wetting ability.
    • loading

    Catalog


    • /

      返回文章
      返回