留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 19 Issue 5
May  2012
数据统计

分享

计量
  • 文章访问数:  324
  • HTML全文浏览量:  76
  • PDF下载量:  19
  • 被引次数: 0
Xin-guo Si, Xiong-gang Lu, Chuan-wei Li, Chong-he Li, and Wei-zhong Ding, Phase transformation and reduction kinetics during the hydrogen reduction of ilmenite concentrate, Int. J. Miner. Metall. Mater., 19(2012), No. 5, pp. 384-390. https://doi.org/10.1007/s12613-012-0568-4
Cite this article as:
Xin-guo Si, Xiong-gang Lu, Chuan-wei Li, Chong-he Li, and Wei-zhong Ding, Phase transformation and reduction kinetics during the hydrogen reduction of ilmenite concentrate, Int. J. Miner. Metall. Mater., 19(2012), No. 5, pp. 384-390. https://doi.org/10.1007/s12613-012-0568-4
引用本文 PDF XML SpringerLink

Phase transformation and reduction kinetics during the hydrogen reduction of ilmenite concentrate

  • 通讯作者:

    Xiong-gang Lu    E-mail: luxg@shu.edu.cn

  • The reduction of ilmenite concentrate by hydrogen gas was investigated in the temperature range of 500 to 1200℃. The microstructure and phase transition of the reduction products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy (OM). It was found that the weight loss and iron metallization rate increased with the increase of reduction temperature and reaction time. The iron metallization rate could reach 87.5% when the sample was reduced at 1150℃ for 80 min. The final phase constituents mainly consist of Fe, M3O5 solid solution phase (M=Mg, Ti, and Fe), and few titanium oxide. Microstructure analysis shows that the surfaces of the reduction products have many holes and cracks and the reactions take place from the exterior of the grain to its interior. The kinetics of reduction indicates that the rate-controlling step is diffusion process control with the activation energy of 89 kJ·mol-1.
  • Phase transformation and reduction kinetics during the hydrogen reduction of ilmenite concentrate

    + Author Affiliations
    • The reduction of ilmenite concentrate by hydrogen gas was investigated in the temperature range of 500 to 1200℃. The microstructure and phase transition of the reduction products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy (OM). It was found that the weight loss and iron metallization rate increased with the increase of reduction temperature and reaction time. The iron metallization rate could reach 87.5% when the sample was reduced at 1150℃ for 80 min. The final phase constituents mainly consist of Fe, M3O5 solid solution phase (M=Mg, Ti, and Fe), and few titanium oxide. Microstructure analysis shows that the surfaces of the reduction products have many holes and cracks and the reactions take place from the exterior of the grain to its interior. The kinetics of reduction indicates that the rate-controlling step is diffusion process control with the activation energy of 89 kJ·mol-1.
    • loading

    Catalog


    • /

      返回文章
      返回