Jun-hui Nie, Cheng-chang Jia, Xian Jia, Yi Li, Ya-feng Zhang, and Xue-bing Liang, Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes, Int. J. Miner. Metall. Mater., 19(2012), No. 5, pp. 446-452. https://doi.org/10.1007/s12613-012-0577-3
Cite this article as:
Jun-hui Nie, Cheng-chang Jia, Xian Jia, Yi Li, Ya-feng Zhang, and Xue-bing Liang, Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes, Int. J. Miner. Metall. Mater., 19(2012), No. 5, pp. 446-452. https://doi.org/10.1007/s12613-012-0577-3
Jun-hui Nie, Cheng-chang Jia, Xian Jia, Yi Li, Ya-feng Zhang, and Xue-bing Liang, Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes, Int. J. Miner. Metall. Mater., 19(2012), No. 5, pp. 446-452. https://doi.org/10.1007/s12613-012-0577-3
Citation:
Jun-hui Nie, Cheng-chang Jia, Xian Jia, Yi Li, Ya-feng Zhang, and Xue-bing Liang, Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes, Int. J. Miner. Metall. Mater., 19(2012), No. 5, pp. 446-452. https://doi.org/10.1007/s12613-012-0577-3
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vol%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (<5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vol%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Garnett effective medium approximation, and its calculated value was about 3.0×10-9 m2·K·W-1.
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vol%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (<5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vol%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Garnett effective medium approximation, and its calculated value was about 3.0×10-9 m2·K·W-1.