留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 19 Issue 9
Sep.  2012
数据统计

分享

计量
  • 文章访问数:  294
  • HTML全文浏览量:  86
  • PDF下载量:  11
  • 被引次数: 0
Mai-wen Zhouand Hao Yu, Effects of precipitates and inclusions on the fracture toughness of hot rolling X70 pipeline steel plates, Int. J. Miner. Metall. Mater., 19(2012), No. 9, pp. 805-811. https://doi.org/10.1007/s12613-012-0632-0
Cite this article as:
Mai-wen Zhouand Hao Yu, Effects of precipitates and inclusions on the fracture toughness of hot rolling X70 pipeline steel plates, Int. J. Miner. Metall. Mater., 19(2012), No. 9, pp. 805-811. https://doi.org/10.1007/s12613-012-0632-0
引用本文 PDF XML SpringerLink

Effects of precipitates and inclusions on the fracture toughness of hot rolling X70 pipeline steel plates

  • 通讯作者:

    Mai-wen Zhou    E-mail: zmwen1985@163.com

  • In order to investigate the fracture toughness, crack tip opening displacement (CTOD) experiments were conducted on two X70 pipeline steel plates with different rolling processes. After the experiments, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to observe the microstructure and fracture morphology. The effects of precipitates on the fracture toughness and the crack initiation mechanism induced by inclusions were analyzed. The CTOD result shows that the steel with a lower finishing cooling temperature has a higher fracture toughness. Inclusions with different shapes and two kinds of precipitates with different sizes were observed. It can be concluded that precipitates with different sizes have different effects and mechanisms on the fracture toughness. Distinguished from the earlier researches, inclusions enriched in silicon can be also served as the crack initiation.
  • Effects of precipitates and inclusions on the fracture toughness of hot rolling X70 pipeline steel plates

    + Author Affiliations
    • In order to investigate the fracture toughness, crack tip opening displacement (CTOD) experiments were conducted on two X70 pipeline steel plates with different rolling processes. After the experiments, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to observe the microstructure and fracture morphology. The effects of precipitates on the fracture toughness and the crack initiation mechanism induced by inclusions were analyzed. The CTOD result shows that the steel with a lower finishing cooling temperature has a higher fracture toughness. Inclusions with different shapes and two kinds of precipitates with different sizes were observed. It can be concluded that precipitates with different sizes have different effects and mechanisms on the fracture toughness. Distinguished from the earlier researches, inclusions enriched in silicon can be also served as the crack initiation.
    • loading

    Catalog


    • /

      返回文章
      返回