The microstructural evolution of a recycled aluminum alloy after equal channel angular pressing (ECAP) up to four passes was investigated using X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). Microhardness tests were performed to determine the associated changes in mechanical properties. An ultrafine-grained material has been obtained with a microstructure showing a mixture of highly strained crystallites. A high density of dislocations was achieved as a result of severe plastic deformation (SPD) through the die. Changes in mechanical behavior are also revealed after ECAP due to strain hardening. Thermal analysis and TEM micrographs obtained after annealing indicate the succession of the recovery, recrystallization, and grain growth phenomena. Moreover, the energy stored during ECAP may be related to the dislocation density introduced by SPD. We finally emphasize the role played by the precipitates in this alloy.
The microstructural evolution of a recycled aluminum alloy after equal channel angular pressing (ECAP) up to four passes was investigated using X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). Microhardness tests were performed to determine the associated changes in mechanical properties. An ultrafine-grained material has been obtained with a microstructure showing a mixture of highly strained crystallites. A high density of dislocations was achieved as a result of severe plastic deformation (SPD) through the die. Changes in mechanical behavior are also revealed after ECAP due to strain hardening. Thermal analysis and TEM micrographs obtained after annealing indicate the succession of the recovery, recrystallization, and grain growth phenomena. Moreover, the energy stored during ECAP may be related to the dislocation density introduced by SPD. We finally emphasize the role played by the precipitates in this alloy.