留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 19 Issue 11
Nov.  2012
数据统计

分享

计量
  • 文章访问数:  310
  • HTML全文浏览量:  71
  • PDF下载量:  8
  • 被引次数: 0
Yue-jun Wang and Kang-gen Zhou, Preparation of spherical ultrafine copper powder via hydrogen reduction-densification of Mg(OH)2-coated Cu2O powder, Int. J. Miner. Metall. Mater., 19(2012), No. 11, pp. 1063-1068. https://doi.org/10.1007/s12613-012-0671-6
Cite this article as:
Yue-jun Wang and Kang-gen Zhou, Preparation of spherical ultrafine copper powder via hydrogen reduction-densification of Mg(OH)2-coated Cu2O powder, Int. J. Miner. Metall. Mater., 19(2012), No. 11, pp. 1063-1068. https://doi.org/10.1007/s12613-012-0671-6
引用本文 PDF XML SpringerLink

Preparation of spherical ultrafine copper powder via hydrogen reduction-densification of Mg(OH)2-coated Cu2O powder

  • 通讯作者:

    Kang-gen Zhou    E-mail: zhoukg63@yahoo.com.cn

  • A novel process was developed to produce spherical copper powder for multilayer ceramic capacitors (MLCC). Spherical ultrafine cuprous oxide (Cu2O) powder was prepared by glucose reduction of Cu(OH)2. The Cu2O particles were coated by Mg(OH)2 and reduced to metallic copper particles. At last, the copper particles were densified by high-temperature heat treatment. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), tap density, and thermogravimetry (TG). It is found that the shape and size distribution of the copper powder are determined by the Cu2O powder and the copper particles do not agglomerate during high-temperature heat treatment because of the existence of Mg(OH)2 coating. After densification at high temperature, the particle tap density increases from 3.30 to 4.18 g/cm3 and the initial oxidation temperature rises from 125 to 150℃.
  • Preparation of spherical ultrafine copper powder via hydrogen reduction-densification of Mg(OH)2-coated Cu2O powder

    + Author Affiliations
    • A novel process was developed to produce spherical copper powder for multilayer ceramic capacitors (MLCC). Spherical ultrafine cuprous oxide (Cu2O) powder was prepared by glucose reduction of Cu(OH)2. The Cu2O particles were coated by Mg(OH)2 and reduced to metallic copper particles. At last, the copper particles were densified by high-temperature heat treatment. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), tap density, and thermogravimetry (TG). It is found that the shape and size distribution of the copper powder are determined by the Cu2O powder and the copper particles do not agglomerate during high-temperature heat treatment because of the existence of Mg(OH)2 coating. After densification at high temperature, the particle tap density increases from 3.30 to 4.18 g/cm3 and the initial oxidation temperature rises from 125 to 150℃.
    • loading

    Catalog


    • /

      返回文章
      返回