留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 19 Issue 12
Dec.  2012
数据统计

分享

计量
  • 文章访问数:  255
  • HTML全文浏览量:  51
  • PDF下载量:  12
  • 被引次数: 0
Suyitno, Budi Arifvianto, Teguh Dwi Widodo, Muslim Mahardika, Punto Dewo, and Urip Agus Salim, Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel, Int. J. Miner. Metall. Mater., 19(2012), No. 12, pp. 1093-1099. https://doi.org/10.1007/s12613-012-0676-1
Cite this article as:
Suyitno, Budi Arifvianto, Teguh Dwi Widodo, Muslim Mahardika, Punto Dewo, and Urip Agus Salim, Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel, Int. J. Miner. Metall. Mater., 19(2012), No. 12, pp. 1093-1099. https://doi.org/10.1007/s12613-012-0676-1
引用本文 PDF XML SpringerLink

Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel

  • 通讯作者:

    Suyitno    E-mail: suyitno@ugm.ac.id

  • The aim of this work is to investigate the effect of cold working and sandblasting on the microhardness, tensile strength and corrosion rate of AISI 316L stainless steel. The specimens were deformed from 17% to 47% and sandblasted for 20 min using SiC particles with a diameter of 500-700 μm and an air flow with 0.6-0.7 MPa pressure. The microhardness distribution and tensile test were conducted and a measurement on the corrosion current density was done to determine the corrosion rate of the specimens. The result shows that the cold working enhances the bulk microhardness, tensile and yield strength of the specimen by the degree of deformation applied in the treatment. The sandblasting treatment increases the microhardness only at the surface of the specimen without or with a low degree of deformation. In addition, the sandblasting enhances the surface roughness. The corrosion resistance is improved by cold working, especially for the highly deformed specimen. However the follow-up sandblasting treatment reduces the corrosion resistance. In conclusion, the cold working is prominent to be used for improving the mechanical properties and corrosion resistance of AISI 316L stainless steel. Meanwhile, the sandblasting subjected to the cold worked steel is only useful for surface texturing instead of improving the mechanical properties and corrosion resistance.
  • Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel

    + Author Affiliations
    • The aim of this work is to investigate the effect of cold working and sandblasting on the microhardness, tensile strength and corrosion rate of AISI 316L stainless steel. The specimens were deformed from 17% to 47% and sandblasted for 20 min using SiC particles with a diameter of 500-700 μm and an air flow with 0.6-0.7 MPa pressure. The microhardness distribution and tensile test were conducted and a measurement on the corrosion current density was done to determine the corrosion rate of the specimens. The result shows that the cold working enhances the bulk microhardness, tensile and yield strength of the specimen by the degree of deformation applied in the treatment. The sandblasting treatment increases the microhardness only at the surface of the specimen without or with a low degree of deformation. In addition, the sandblasting enhances the surface roughness. The corrosion resistance is improved by cold working, especially for the highly deformed specimen. However the follow-up sandblasting treatment reduces the corrosion resistance. In conclusion, the cold working is prominent to be used for improving the mechanical properties and corrosion resistance of AISI 316L stainless steel. Meanwhile, the sandblasting subjected to the cold worked steel is only useful for surface texturing instead of improving the mechanical properties and corrosion resistance.
    • loading

    Catalog


    • /

      返回文章
      返回