留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 20 Issue 8
Aug.  2013
数据统计

分享

计量
  • 文章访问数:  264
  • HTML全文浏览量:  73
  • PDF下载量:  15
  • 被引次数: 0
Y. H. Yau, A. Hussain, R. K. Lalwani, H. K. Chan, and N. Hakimi, Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 8, pp. 779-787. https://doi.org/10.1007/s12613-013-0796-2
Cite this article as:
Y. H. Yau, A. Hussain, R. K. Lalwani, H. K. Chan, and N. Hakimi, Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 8, pp. 779-787. https://doi.org/10.1007/s12613-013-0796-2
引用本文 PDF XML SpringerLink

Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy

  • 通讯作者:

    Y. H. Yau    E-mail: yhyau@um.edu.my

  • Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy Al2024-T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were affixed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to Al2024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in Al2024-T3 and is potentially more useful than models derived previously.
  • Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy

    + Author Affiliations
    • Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy Al2024-T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were affixed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to Al2024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in Al2024-T3 and is potentially more useful than models derived previously.
    • loading

    Catalog


    • /

      返回文章
      返回