Varsha R. Mehto and R. K. Pandey, Activator-assisted electroless deposition of copper nanostructured films, Int. J. Miner. Metall. Mater., 21(2014), No. 2, pp. 196-203. https://doi.org/10.1007/s12613-014-0885-x
Cite this article as:
Varsha R. Mehto and R. K. Pandey, Activator-assisted electroless deposition of copper nanostructured films, Int. J. Miner. Metall. Mater., 21(2014), No. 2, pp. 196-203. https://doi.org/10.1007/s12613-014-0885-x
Varsha R. Mehto and R. K. Pandey, Activator-assisted electroless deposition of copper nanostructured films, Int. J. Miner. Metall. Mater., 21(2014), No. 2, pp. 196-203. https://doi.org/10.1007/s12613-014-0885-x
Citation:
Varsha R. Mehto and R. K. Pandey, Activator-assisted electroless deposition of copper nanostructured films, Int. J. Miner. Metall. Mater., 21(2014), No. 2, pp. 196-203. https://doi.org/10.1007/s12613-014-0885-x
This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroless-deposited metals, such as Cu, Co, Ni, and Ag, and their alloys had many advantages in micro- and nanotechnologies. The structural, morphological, and optical properties of copper deposits were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. The structural data was further analyzed using the Rietveld refinement program. Structural studies reveal that the deposited copper prefers a (111) orientation. AFM studies suggest the deposited materials form compact, uniform, and nanocrystalline phases with a high tendency to self-organize. The data show that the particle size can be controlled by controlling the activator concentration. The absorption spectra of the as-deposited copper nanoparticles reveal that the plasmonic peak broadens and exhibits a blue shift with decreasing particle size.
This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroless-deposited metals, such as Cu, Co, Ni, and Ag, and their alloys had many advantages in micro- and nanotechnologies. The structural, morphological, and optical properties of copper deposits were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. The structural data was further analyzed using the Rietveld refinement program. Structural studies reveal that the deposited copper prefers a (111) orientation. AFM studies suggest the deposited materials form compact, uniform, and nanocrystalline phases with a high tendency to self-organize. The data show that the particle size can be controlled by controlling the activator concentration. The absorption spectra of the as-deposited copper nanoparticles reveal that the plasmonic peak broadens and exhibits a blue shift with decreasing particle size.