留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 21 Issue 8
Aug.  2014
数据统计

分享

计量
  • 文章访问数:  347
  • HTML全文浏览量:  83
  • PDF下载量:  9
  • 被引次数: 0
Le-yu Zhou, Dan Zhang,  and Ya-zheng Liu, Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels, Int. J. Miner. Metall. Mater., 21(2014), No. 8, pp. 755-765. https://doi.org/10.1007/s12613-014-0968-8
Cite this article as:
Le-yu Zhou, Dan Zhang,  and Ya-zheng Liu, Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels, Int. J. Miner. Metall. Mater., 21(2014), No. 8, pp. 755-765. https://doi.org/10.1007/s12613-014-0968-8
引用本文 PDF XML SpringerLink

Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels

  • 通讯作者:

    Ya-zheng Liu    E-mail: lyzh@ustb.edu.cn

  • Uniaxial tension tests and hole-expansion tests were carried out to determine the influence of silicon on the microstructures, mechanical properties, and stretch-flangeability of conventional dual-phase steels. Compared to 0.03wt% silicon, the addition of 1.08wt% silicon induced the formation of finer ferrite grains (6.8 μm) and a higher carbon content of martensite (Cm ≈ 0.32wt%). As the silicon level increased, the initial strain-hardening rate (n value) and the uniform elongation increased, whereas the yield strength, yield ratio, and stretch-flangeability decreased. The microstructures were observed after hole-expansion tests. The results showed that low carbon content martensite (Cm ≈ 0.19wt%) can easily deform in coordination with ferrite. The relationship between the mechanical properties and stretch-flangeability indicated that the steel with large post-uniform elongation has good stretch-flangeability due to a closer plastic incompatibility of the ferrite and martensite phases, which can effectively delay the production and decohesion of microvoids.
  • Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels

    + Author Affiliations
    • Uniaxial tension tests and hole-expansion tests were carried out to determine the influence of silicon on the microstructures, mechanical properties, and stretch-flangeability of conventional dual-phase steels. Compared to 0.03wt% silicon, the addition of 1.08wt% silicon induced the formation of finer ferrite grains (6.8 μm) and a higher carbon content of martensite (Cm ≈ 0.32wt%). As the silicon level increased, the initial strain-hardening rate (n value) and the uniform elongation increased, whereas the yield strength, yield ratio, and stretch-flangeability decreased. The microstructures were observed after hole-expansion tests. The results showed that low carbon content martensite (Cm ≈ 0.19wt%) can easily deform in coordination with ferrite. The relationship between the mechanical properties and stretch-flangeability indicated that the steel with large post-uniform elongation has good stretch-flangeability due to a closer plastic incompatibility of the ferrite and martensite phases, which can effectively delay the production and decohesion of microvoids.
    • loading

    Catalog


    • /

      返回文章
      返回