留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 22 Issue 2
Feb.  2015
数据统计

分享

计量
  • 文章访问数:  251
  • HTML全文浏览量:  51
  • PDF下载量:  11
  • 被引次数: 0
Jagannath Pal, Satadal Ghorai, and Avimanyu Das, Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making, Int. J. Miner. Metall. Mater., 22(2015), No. 2, pp. 132-140. https://doi.org/10.1007/s12613-015-1053-7
Cite this article as:
Jagannath Pal, Satadal Ghorai, and Avimanyu Das, Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making, Int. J. Miner. Metall. Mater., 22(2015), No. 2, pp. 132-140. https://doi.org/10.1007/s12613-015-1053-7
引用本文 PDF XML SpringerLink

Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making

  • 通讯作者:

    Jagannath Pal    E-mail: jgpal2003@yahoo.co.in

  • Iron ore microfines and concentrate have very limited uses in sintering processes. They are used in pelletization; however, this process is cost intensive. Furthermore, the microfines of non-coking coal and other carbon-bearing materials, e.g., blast-furnace flue dust (BFD) and coke fines, are not used extensively in the metallurgical industry because of operational difficulties and handling problems. In the present work, to utilize these microfines, coal composite iron oxide micropellets (2-6 mm in size) were produced through an innovative technique in which lime and molasses were used as binding materials in the micropellets. The micropellets were subsequently treated with CO2 or the industrial waste gas to induce the chemical bond formation. The results show that, at a very high carbon level of 22wt% (38wt% coal), the cold crushing strength and abrasion index of the micropellets are 2.5-3 kg/cm2 and 5wt%-9wt%, respectively; these values indicate that the pellets are suitable for cold handling. The developed micropellets have strong potential as a heat source in smelting reduction in iron making and sintering to reduce coke breeze. The micropellets produced with BFD and coke fines (8wt%-12wt%) were used in iron ore sintering and were observed to reduce the coke breeze consumption by 3%-4%. The quality of the produced sinter was at par with that of the conventional blast-furnace sinter.
  • Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making

    + Author Affiliations
    • Iron ore microfines and concentrate have very limited uses in sintering processes. They are used in pelletization; however, this process is cost intensive. Furthermore, the microfines of non-coking coal and other carbon-bearing materials, e.g., blast-furnace flue dust (BFD) and coke fines, are not used extensively in the metallurgical industry because of operational difficulties and handling problems. In the present work, to utilize these microfines, coal composite iron oxide micropellets (2-6 mm in size) were produced through an innovative technique in which lime and molasses were used as binding materials in the micropellets. The micropellets were subsequently treated with CO2 or the industrial waste gas to induce the chemical bond formation. The results show that, at a very high carbon level of 22wt% (38wt% coal), the cold crushing strength and abrasion index of the micropellets are 2.5-3 kg/cm2 and 5wt%-9wt%, respectively; these values indicate that the pellets are suitable for cold handling. The developed micropellets have strong potential as a heat source in smelting reduction in iron making and sintering to reduce coke breeze. The micropellets produced with BFD and coke fines (8wt%-12wt%) were used in iron ore sintering and were observed to reduce the coke breeze consumption by 3%-4%. The quality of the produced sinter was at par with that of the conventional blast-furnace sinter.
    • loading

    Catalog


    • /

      返回文章
      返回