留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 22 Issue 2
Feb.  2015
数据统计

分享

计量
  • 文章访问数:  336
  • HTML全文浏览量:  73
  • PDF下载量:  9
  • 被引次数: 0
Song-mei Li, Ying-dong Li, You Zhang, Jian-hua Liu,  and Mei Yu, Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy, Int. J. Miner. Metall. Mater., 22(2015), No. 2, pp. 167-174. https://doi.org/10.1007/s12613-015-1057-3
Cite this article as:
Song-mei Li, Ying-dong Li, You Zhang, Jian-hua Liu,  and Mei Yu, Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy, Int. J. Miner. Metall. Mater., 22(2015), No. 2, pp. 167-174. https://doi.org/10.1007/s12613-015-1057-3
引用本文 PDF XML SpringerLink

Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

  • 通讯作者:

    Song-mei Li    E-mail: songmei_li@buaa.edu.cn

  • Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.
  • Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    + Author Affiliations
    • Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.
    • loading

    Catalog


    • /

      返回文章
      返回