留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 22 Issue 4
Apr.  2015
数据统计

分享

计量
  • 文章访问数:  274
  • HTML全文浏览量:  65
  • PDF下载量:  7
  • 被引次数: 0
Xin Zhao, Shu-min Han, Yuan Li, Xiao-cui Chen, and Dan-dan Ke, Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4-Mg2NiH4 composites, Int. J. Miner. Metall. Mater., 22(2015), No. 4, pp. 423-428. https://doi.org/10.1007/s12613-015-1089-8
Cite this article as:
Xin Zhao, Shu-min Han, Yuan Li, Xiao-cui Chen, and Dan-dan Ke, Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4-Mg2NiH4 composites, Int. J. Miner. Metall. Mater., 22(2015), No. 4, pp. 423-428. https://doi.org/10.1007/s12613-015-1089-8
引用本文 PDF XML SpringerLink

Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4-Mg2NiH4 composites

  • 通讯作者:

    Shu-min Han    E-mail: hanshm@ysu.edu.cn

  • A composite of LiBH4-Mg2NiH4 doped with 10wt% CeH2.29 was prepared by ball milling followed by dynamic interspace vacuum treatment at 573 K. The introduction of CeH2.29 caused a transformation in the morphology of Mg from complex spongy and lamellar to uniformly spongy, resulting in refined particle size and abundant H diffusion pathways. This LiBH4-Mg2NiH4 + 10wt% CeH2.29 composite exhibited excellent hydrogen storage properties. The starting temperature of rapid H absorption decreased to 375 K in the doped composite from 452 K for the unmodified material, and the onset decomposition temperature of its hydride was reduced from 536 K to 517 K. In addition, the time required for a hydrogen release of 1.5wt% (at 598 K) was 87 s less than that of the un-doped composite.
  • Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4-Mg2NiH4 composites

    + Author Affiliations
    • A composite of LiBH4-Mg2NiH4 doped with 10wt% CeH2.29 was prepared by ball milling followed by dynamic interspace vacuum treatment at 573 K. The introduction of CeH2.29 caused a transformation in the morphology of Mg from complex spongy and lamellar to uniformly spongy, resulting in refined particle size and abundant H diffusion pathways. This LiBH4-Mg2NiH4 + 10wt% CeH2.29 composite exhibited excellent hydrogen storage properties. The starting temperature of rapid H absorption decreased to 375 K in the doped composite from 452 K for the unmodified material, and the onset decomposition temperature of its hydride was reduced from 536 K to 517 K. In addition, the time required for a hydrogen release of 1.5wt% (at 598 K) was 87 s less than that of the un-doped composite.
    • loading

    Catalog


    • /

      返回文章
      返回