留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 22 Issue 10
Oct.  2015
数据统计

分享

计量
  • 文章访问数:  445
  • HTML全文浏览量:  146
  • PDF下载量:  32
  • 被引次数: 0
Jia-jie Liand Michael Hitch, Ultra-fine grinding and mechanical activation of mine waste rock using a high-speed stirred mill for mineral carbonation, Int. J. Miner. Metall. Mater., 22(2015), No. 10, pp. 1005-1016. https://doi.org/10.1007/s12613-015-1162-3
Cite this article as:
Jia-jie Liand Michael Hitch, Ultra-fine grinding and mechanical activation of mine waste rock using a high-speed stirred mill for mineral carbonation, Int. J. Miner. Metall. Mater., 22(2015), No. 10, pp. 1005-1016. https://doi.org/10.1007/s12613-015-1162-3
引用本文 PDF XML SpringerLink

Ultra-fine grinding and mechanical activation of mine waste rock using a high-speed stirred mill for mineral carbonation

  • 通讯作者:

    Jia-jie Li    E-mail: jiajie.li@alumni.ubc.ca

  • CO2 sequestration by mineral carbonation can permanently store CO2 and mitigate climate change. However, the cost and reaction rate of mineral carbonation must be balanced to be viable for industrial applications. In this study, it was attempted to reduce the carbonation costs by using mine waste rock as a feed stock and to enhance the reaction rate using wet mechanical activation as a pre-treatment method. Slurry rheological properties, particle size distribution, specific surface area, crystallinity, and CO2 sequestration reaction efficiency of the initial and mechanically activated mine waste rock and olivine were characterized. The results show that serpentine acts as a catalyst, increasing the slurry yield stress, assisting new surface formation, and hindering the size reduction and structure amorphization. Mechanically activated mine waste rock exhibits a higher carbonation conversion than olivine with equal specific milling energy input. The use of a high-speed stirred mill may render the mineral carbonation suitable for mining industrial practice.
  • Ultra-fine grinding and mechanical activation of mine waste rock using a high-speed stirred mill for mineral carbonation

    + Author Affiliations
    • CO2 sequestration by mineral carbonation can permanently store CO2 and mitigate climate change. However, the cost and reaction rate of mineral carbonation must be balanced to be viable for industrial applications. In this study, it was attempted to reduce the carbonation costs by using mine waste rock as a feed stock and to enhance the reaction rate using wet mechanical activation as a pre-treatment method. Slurry rheological properties, particle size distribution, specific surface area, crystallinity, and CO2 sequestration reaction efficiency of the initial and mechanically activated mine waste rock and olivine were characterized. The results show that serpentine acts as a catalyst, increasing the slurry yield stress, assisting new surface formation, and hindering the size reduction and structure amorphization. Mechanically activated mine waste rock exhibits a higher carbonation conversion than olivine with equal specific milling energy input. The use of a high-speed stirred mill may render the mineral carbonation suitable for mining industrial practice.
    • loading

    Catalog


    • /

      返回文章
      返回