留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 22 Issue 10
Oct.  2015
数据统计

分享

计量
  • 文章访问数:  346
  • HTML全文浏览量:  116
  • PDF下载量:  9
  • 被引次数: 0
Lei Yang, Bao-yu Wang, Jian-guo Lin, Hui-jun Zhao,  and Wen-yu Ma, Ductile fracture behavior of TA15 titanium alloy at elevated temperatures, Int. J. Miner. Metall. Mater., 22(2015), No. 10, pp. 1082-1091. https://doi.org/10.1007/s12613-015-1171-2
Cite this article as:
Lei Yang, Bao-yu Wang, Jian-guo Lin, Hui-jun Zhao,  and Wen-yu Ma, Ductile fracture behavior of TA15 titanium alloy at elevated temperatures, Int. J. Miner. Metall. Mater., 22(2015), No. 10, pp. 1082-1091. https://doi.org/10.1007/s12613-015-1171-2
引用本文 PDF XML SpringerLink

Ductile fracture behavior of TA15 titanium alloy at elevated temperatures

  • 通讯作者:

    Bao-yu Wang    E-mail: bywang@ustb.edu.cn

  • To better understand the fracture behavior of TA15 titanium alloy during hot forming, three groups of experiments were conducted to investigate the influence of deformation temperature, strain rate, initial microstructure, and stress triaxiality on the fracture behavior of TA15 titanium alloy. The microstructure and fracture surface of the alloy were observed by scanning electronic microscopy to analyze the potential fracture mechanisms under the experimental deformation conditions. The experimental results indicate that the fracture strain increases with increasing deformation temperature, decreasing strain rate, and decreasing stress triaxiality. Fracture is mainly caused by the nucleation, growth, and coalescence of microvoids because of the breakdown of compatibility requirements at the α/β interface. In the equiaxed microstructure, the fracture strain decreases with decreasing volume fraction of the primary α-phase (αp) and increasing α/β-interface length. In the bimodal microstructure, the fracture strain is mainly affected by α-lamella width.
  • Ductile fracture behavior of TA15 titanium alloy at elevated temperatures

    + Author Affiliations
    • To better understand the fracture behavior of TA15 titanium alloy during hot forming, three groups of experiments were conducted to investigate the influence of deformation temperature, strain rate, initial microstructure, and stress triaxiality on the fracture behavior of TA15 titanium alloy. The microstructure and fracture surface of the alloy were observed by scanning electronic microscopy to analyze the potential fracture mechanisms under the experimental deformation conditions. The experimental results indicate that the fracture strain increases with increasing deformation temperature, decreasing strain rate, and decreasing stress triaxiality. Fracture is mainly caused by the nucleation, growth, and coalescence of microvoids because of the breakdown of compatibility requirements at the α/β interface. In the equiaxed microstructure, the fracture strain decreases with decreasing volume fraction of the primary α-phase (αp) and increasing α/β-interface length. In the bimodal microstructure, the fracture strain is mainly affected by α-lamella width.
    • loading

    Catalog


    • /

      返回文章
      返回