Chuan Zhao, Chi Zhang, Wen-quan Cao, and Zhi-gang Yang, Variation in retained austenite content and mechanical properties of 0.2C–7Mn steel after intercritical annealing, Int. J. Miner. Metall. Mater., 23(2016), No. 2, pp. 161-167. https://doi.org/10.1007/s12613-016-1223-2
Cite this article as:
Chuan Zhao, Chi Zhang, Wen-quan Cao, and Zhi-gang Yang, Variation in retained austenite content and mechanical properties of 0.2C–7Mn steel after intercritical annealing, Int. J. Miner. Metall. Mater., 23(2016), No. 2, pp. 161-167. https://doi.org/10.1007/s12613-016-1223-2
Chuan Zhao, Chi Zhang, Wen-quan Cao, and Zhi-gang Yang, Variation in retained austenite content and mechanical properties of 0.2C–7Mn steel after intercritical annealing, Int. J. Miner. Metall. Mater., 23(2016), No. 2, pp. 161-167. https://doi.org/10.1007/s12613-016-1223-2
Citation:
Chuan Zhao, Chi Zhang, Wen-quan Cao, and Zhi-gang Yang, Variation in retained austenite content and mechanical properties of 0.2C–7Mn steel after intercritical annealing, Int. J. Miner. Metall. Mater., 23(2016), No. 2, pp. 161-167. https://doi.org/10.1007/s12613-016-1223-2
The effects of annealing time and temperature on the retained austenite content and mechanical properties of 0.2C–7Mn steel were studied. The retained austenite content of 0.2C–7Mn steel was compared with that of 0.2C–5Mn steel. It is found that 0.2C–7Mn steel exhibits a similar variation trend of retained austenite content as 0.2C–5Mn steel. However, in detail, these trends are different. 0.2C–7Mn steel contains approximately 7.5vol% retained austenite after austenitization and quenching. The stability of the reversed austenite in 0.2C–7Mn steel is lower than that in 0.2C–5Mn steel; in contrast, the equilibrium reversed austenite fraction of 0.2C–7Mn steel is substantially greater than that of 0.2C–5Mn steel. Therefore, the retained austenite content in 0.2C–7Mn steel reaches 53.1vol%. The tensile results show that long annealing time and high annealing temperature may not favor the enhancement of mechanical properties of 0.2C–7Mn steel. The effect of retained austenite on the tensile strength of the steel depends on the content of retained austenite; in contrast, the 0.2% yield strength linearly decreases with increasing retained austenite content.
The effects of annealing time and temperature on the retained austenite content and mechanical properties of 0.2C–7Mn steel were studied. The retained austenite content of 0.2C–7Mn steel was compared with that of 0.2C–5Mn steel. It is found that 0.2C–7Mn steel exhibits a similar variation trend of retained austenite content as 0.2C–5Mn steel. However, in detail, these trends are different. 0.2C–7Mn steel contains approximately 7.5vol% retained austenite after austenitization and quenching. The stability of the reversed austenite in 0.2C–7Mn steel is lower than that in 0.2C–5Mn steel; in contrast, the equilibrium reversed austenite fraction of 0.2C–7Mn steel is substantially greater than that of 0.2C–5Mn steel. Therefore, the retained austenite content in 0.2C–7Mn steel reaches 53.1vol%. The tensile results show that long annealing time and high annealing temperature may not favor the enhancement of mechanical properties of 0.2C–7Mn steel. The effect of retained austenite on the tensile strength of the steel depends on the content of retained austenite; in contrast, the 0.2% yield strength linearly decreases with increasing retained austenite content.