留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 23 Issue 10
Oct.  2016
数据统计

分享

计量
  • 文章访问数:  335
  • HTML全文浏览量:  97
  • PDF下载量:  24
  • 被引次数: 0
Wen Yu, Qiong-yao Tang, Jiang-an Chen,  and Ti-chang Sun, Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage, Int. J. Miner. Metall. Mater., 23(2016), No. 10, pp. 1126-1132. https://doi.org/10.1007/s12613-016-1331-z
Cite this article as:
Wen Yu, Qiong-yao Tang, Jiang-an Chen,  and Ti-chang Sun, Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage, Int. J. Miner. Metall. Mater., 23(2016), No. 10, pp. 1126-1132. https://doi.org/10.1007/s12613-016-1331-z
引用本文 PDF XML SpringerLink

Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage

  • 通讯作者:

    Wen Yu    E-mail: yuwenminer@163.com

  • A thermodynamic analysis of the carbothermic reduction of high-phosphorus oolitic iron ore (HPOIO) was conducted by the FactSage thermochemical software. The effects of temperature, C/O ratio, additive types, and dosages both on the reduction of fluorapatite and the formation of liquid slag were studied. The results show that the minimum thermodynamic reduction temperature of fluorapatite by carbon decreases to about 850°C, which is mainly ascribed to the presence of SiO2, Al2O3, and Fe. The reduction rate of fluorapatite increases and the amount of liquid slag decreases with the rise of C/O ratio. The reduction of fluorapatite is hindered by the addition of CaO and Na2CO3, thereby allowing the selective reduction of iron oxides upon controlled C/O ratio. The thermodynamic results obtain in the present work are in good agreement with the experimental results available in the literatures.
  • Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage

    + Author Affiliations
    • A thermodynamic analysis of the carbothermic reduction of high-phosphorus oolitic iron ore (HPOIO) was conducted by the FactSage thermochemical software. The effects of temperature, C/O ratio, additive types, and dosages both on the reduction of fluorapatite and the formation of liquid slag were studied. The results show that the minimum thermodynamic reduction temperature of fluorapatite by carbon decreases to about 850°C, which is mainly ascribed to the presence of SiO2, Al2O3, and Fe. The reduction rate of fluorapatite increases and the amount of liquid slag decreases with the rise of C/O ratio. The reduction of fluorapatite is hindered by the addition of CaO and Na2CO3, thereby allowing the selective reduction of iron oxides upon controlled C/O ratio. The thermodynamic results obtain in the present work are in good agreement with the experimental results available in the literatures.
    • loading

    Catalog


    • /

      返回文章
      返回