留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 23 Issue 12
Dec.  2016
数据统计

分享

计量
  • 文章访问数:  290
  • HTML全文浏览量:  65
  • PDF下载量:  7
  • 被引次数: 0
Song-tao Yang, Mi Zhou, Tao Jiang, Shan-fei Guan, Wei-jun Zhang, and Xiang-xin Xue, Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore, Int. J. Miner. Metall. Mater., 23(2016), No. 12, pp. 1353-1359. https://doi.org/10.1007/s12613-016-1358-1
Cite this article as:
Song-tao Yang, Mi Zhou, Tao Jiang, Shan-fei Guan, Wei-jun Zhang, and Xiang-xin Xue, Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore, Int. J. Miner. Metall. Mater., 23(2016), No. 12, pp. 1353-1359. https://doi.org/10.1007/s12613-016-1358-1
引用本文 PDF XML SpringerLink

Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

  • 通讯作者:

    Mi Zhou    E-mail: zhoumineu@163.com

  • A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V–Ti–Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio (η), S removal ratio (RS), and P removal ratio (RP) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved the η, RS, and RP in the coal-based reduction of V–Ti–Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70 μm at 1350°C, which is substantially larger than the minimum particle size required (20 μm) for magnetic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V–Ti–Cr iron ore followed by magnetic separation.
  • Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    + Author Affiliations
    • A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V–Ti–Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio (η), S removal ratio (RS), and P removal ratio (RP) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved the η, RS, and RP in the coal-based reduction of V–Ti–Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70 μm at 1350°C, which is substantially larger than the minimum particle size required (20 μm) for magnetic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V–Ti–Cr iron ore followed by magnetic separation.
    • loading

    Catalog


    • /

      返回文章
      返回