留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 1
Jan.  2017
数据统计

分享

计量
  • 文章访问数:  747
  • HTML全文浏览量:  162
  • PDF下载量:  17
  • 被引次数: 0
Xin Lu, Takahiro Miki,  and Tetsuya Nagasaka, Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp. 25-36. https://doi.org/10.1007/s12613-017-1375-8
Cite this article as:
Xin Lu, Takahiro Miki,  and Tetsuya Nagasaka, Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp. 25-36. https://doi.org/10.1007/s12613-017-1375-8
引用本文 PDF XML SpringerLink
研究论文

Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting

  • 通讯作者:

    Xin Lu    E-mail: xin.lu.a5@tohoku.ac.jp

  • To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B=(%CaO)/(%SiO2)=1, where B is the basicity. We observed that controlling the slag composition at approximately B=1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.
  • Research Article

    Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting

    + Author Affiliations
    • To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B=(%CaO)/(%SiO2)=1, where B is the basicity. We observed that controlling the slag composition at approximately B=1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.
    • loading
    • [1]
      B. K. Reck and T. E. Graedel, Challenges in metal recycling, Science, 337(2012), No. 6095, p. 690.
      [2]
      B. K. Reck, D. B. Müller, K. Rostkowski, and T. E. Graedel, Anthropogenic nickel cycle:Insights into use, trade, and recycling, Environ. Sci. Technol., 42(2008), No. 9, p. 3394.
      [3]
      E. M. Harper, G. Kavlak, and T. E. Graedel, Tracking the metal of the goblins:cobalt's cycle of use, Environ. Sci. Technol., 46(2012), No. 2, p. 1079.
      [4]
      T. E. Norgate, S. Jahanshahi, and W. J. Rankin, Assessing the environmental impact of metal production processes, J. Cleaner Prod., 15(2007), No. 8-9, p. 838.
      [5]
      T. Norgate and S. Jahanshahi, Assessing the energy and greenhouse gas footprints of nickel laterite process, Miner. Eng., 24(2011), No. 7, p. 698.
      [6]
      M. J. Eckelman, Facility-level energy and greenhouse gas life-cycle assessment of the global nickel industry, Resour. Conserv. Recycl., 54(2010), No. 4, p. 256.
      [7]
      G. M. Mudd, The Environmental sustainability of mining in Australia:key mega-trends and looming constraints, Resour. Policy, 35(2010), No. 2, p. 98.
      [8]
      M. J. Wahll, D. J. Maykuth, and H. J. Hucek, Handbook of Superalloys, International Alloy Compositions and Designations Series, Battelle Press, Columbus, 1979, p. 1.
      [9]
      N. S. Stoloff, ASM Handbook Volume 1:Properties and Selection:Irons, Steels, and High-performance Alloys (06181)10th Ed., ASM International Handbook Committee, Materials Park, OH, 1990, p. 950.
      [10]
      W. Boesch, Superalloys, Supercomposites and Superceramics, Edited by J. K. Tien and T. Caulfield, Academic Press, Boston, 1989, p. 3.
      [11]
      R. Schlatter, Melting and refining technology of high-temperature steels and superalloys:a review of recent process developments,[in] Superalloys 1972, John Wiley, New York, 1972, p. A1.
      [12]
      J. J. deBarbadillo, Nickel-base superalloys; physical metallurgy of recycling, Metall. Trans. A, 14(1983), No. 2, p. 329.
      [13]
      R. R. Srivastava, M. Kim, J. Lee, M. K. Jha, and B. S. Kim, Resource recycling of superalloys and hydrometallurgical challenges, J. Mater. Sci., 49(2014), No. 14, p. 4671.
      [14]
      F. Crundwell, M. Moats, V. Ramachandran, T. Robinson, and W. G. Davenport, Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, Oxford OX51GB, UK, 2011, p. 215.
      [15]
      H. Shen and E. Forssberg, An overview of recovery of metals from slags, Waste Manage., 23(2003), No. 10, p. 933.
      [16]
      B. Gorai, R. K. Jana, and Premchand, Characteristics and utilisation of copper slag-a review, Resour. Conserv. Recycl., 39(2003), No. 4, p. 299.
      [17]
      X. Lu, K. Matsubae, K. Nakajima, S. Nakamura, and T. Nagasaka, Thermodynamic considerations of contamination by alloying elements of remelted end-of-life nickel-and cobalt-based superalloys, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1785.
      [18]
      H. M. Henao, M. Hino, and K. Itagaki, Phase equilibrium between Ni-S melt and FeOx-SiO2 or FeOx-CaO based slag under controlled partial pressures, Mater. Trans., 43(2002), No. 9, p. 2219.
      [19]
      Y. Takeda, S. Ishiwata, and A. Yazawa, Distribution equilibrium of minor elements between liquid copper and calcium ferrite slag, Trans. Jpn. Inst. Met., 24(1983), No. 7, p. 518.
      [20]
      R. G. Reddy and C. C. Acholonu, Distribution of nickel between copper-nickel and alumina saturated iron silicate slags, Metall. Trans. B, 15(1984), No. 1, p. 33.
      [21]
      R. U. Pagador, M. Hino, and K. Itagaki, Phase equilibrium between FeOx-MgO-SiO2 or FeOx-CaO-MgO-SiO2 slag and nickel alloy, J. Min. Mater. Process. Inst. Jpn., 114(1998), No. 2, p. 127.
      [22]
      H. M. Henao, M. Hino, and K. Itagaki, Distribution of Ni, Cr, Mn, Co and Cu between Fe-Ni alloy and FeOx-MgO-SiO2 base slags, Mater. Trans., 42(2001), No. 9, p. 1959.
      [23]
      G. Q. Li and F. Tsukihashi, Distribution equilibria of Fe, Co and Ni between MgO-saturated FeOx-MgO-SiO2 slag and Ni alloy, ISIJ Int., 41(2001), No. 11, p. 1303.
      [24]
      S. W. Cho and H. Suito, Magnesium deoxidation and nitritogen distribution in liquid nickel equilibrated with CaO-Al2O3-MgO slags, ISIJ Int., 34(1994), No. 9, p. 746.
      [25]
      H. M. Henao, M. Hino, and K. Itagaki, Phase equilibrium between Ni-S melt and CaO-Al2O3 based slag in CO-CO2-SO2 gas mixtures at 1773 K, Mater. Trans., 43(2002), No. 11, p. 2873.
      [26]
      H. M. Henao and K. Itagaki, Phase equilibrium and distribution of minor elements between Ni-S melt and Al2O3-CaO-MgO slag at 1873 K, Metall. Mater. Trans. B, 35(2004), No. 6, p. 1041.
      [27]
      S. S. Wang, A. J. Kurtis, and J. M. Toguri, Distribution of copper-nickel and copper-cobalt between copper-nickel and copper-cobalt alloys and silica saturated fayalite slags, Can. Metall. Q., 12(1973), No. 4, p. 383.
      [28]
      S. S. Wang, N. H. Santander, and J. M. Toguri, The solubility of nickel and cobalt in iron silicate slags, Metall. Trans., 5(1974), p. 261.
      [29]
      E. J. Grimsey and J. M. Toguri, Cobalt in silica saturated fayalite slags, Can. Metall. Q., 74(1988), No. 4, p. 331.
      [30]
      A. Katyal and J. H. E. Jeffes, Activities of cobalt and copper oxides in silicate and ferrite slags,[in] 3rd International Conference on Molten Slags and Flues, Glasgow, Institute of metals, London, 1989, p. 46.
      [31]
      E. J. Grimsey and X. L. Liu, The activity coefficient of cobalt oxide in silica-saturated iron silicate slags, Metall. Mater. Trans. B, 26(1995), No. 2, p. 229.
      [32]
      K. C. Teague, D. R. Swinbourne, and S. Jahanshahi, A thermodynamic study on cobalt containing calcium ferrite and calcium iron silicate slags at 1573 K, Metall. Mater. Trans. B, 32(2001), No. 1, p 47.
      [33]
      C. Chen, L. Zhang, and S. Jahanshahi, Review and thermodynamic modelling of CoO in iron silicate-based slags and calcium ferrite-based slags,[in] VⅡ International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, Johannesburg, 2004, p. 509.
      [34]
      B. Derin and O. Yücel, The distribution of cobalt between Co-Cu alloys and Al2O3-FeO-Fe2O3-SiO2 slags, Scand. J. Metall., 31(2002), No. 1, p. 12.
      [35]
      R. U. Pagador, M. Hino, and K. Itagaki, Distribution of minor elements between MgO saturated FeOx-MgO-SiO2 or FeOx-CaO-MgO-SiO2 slag and nickel alloy, Mater. Trans. JIM, 40(1999), No. 3, p. 225.
      [36]
      S. Kitamura, H. Kuriyama, N. Maruoka, K. Yamaguchi, and A. Hasegawa, Distribution of cobalt between MgO-saturated FeOx-MgO-CaO-SiO2 slag and Fe-Cu-Co molten alloy, Mater. Trans., 49(2008), No. 11, p. 2636.
      [37]
      I. Barin, Thermochemical Data of Pure Substances, 2nd Ed., VCH Verlagsgesellschaft mbH, Weinheim, 1993, p. 271.
      [38]
      H. S. O'Neill and A. J. Berry, Activity coefficients at low dilution of CrO, NiO and CoO in melts in the system CaO-MgO-Al2O3-SiO2 at 1400℃:using the thermodynamic behavior of transition metal oxides in silicate melts to probe their structure, Chem. Geol., 231(2006), p. 77.
      [39]
      H. S. O'Neill and S. M. Eggins, The effect of melt composition on trace element partitioning:an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts, Chem. Geol., 186(2002), No. 1-2, p. 151.
      [40]
      H. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics:the Calphad Method, Cambridge University Press, New York, USA, 2007.
      [41]
      M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations:Their Thermodynamic Basis, 2nd Ed., Cambridge University Press, Cambridge, UK, 2007.
      [42]
      S. an Mey, Thermodynamic re-evaluation of the Cu-Ni system, Calphad, 16(1992), No. 3, p. 255.
      [43]
      J. Kubišta and J. Vřešt'ál, Thermodynamics of the liquid Co-Cu system and calculation of phase diagram, J. Phase Equilib., 21(2000), No. 2, p. 125.
      [44]
      Y. Taniguchi, K. Morita, and N. Sano, Activities of FeO in CaO-Al2O3-SiO2-FeO and CaO-Al2O3-CaFe2-FeO slags, ISIJ Int., 37(1997), No. 10, p. 956.
      [45]
      T. Ogura, R. Fujiwara, R. Mochizuki, Y. Kawamoto, T. Oishi, and M. Iwase, Activity determinator for the automatic measurements of the chemical potentials of FeO in metallurgical slags, Metall. Trans. B, 23(1992), No. 4, p. 459.
      [46]
      S. Banya and M. Hino, Calculation of activities of the constituents in FetO-(CaO+MgO)-(SiO2+P2O5) slags by regular solution model, Tetsu-to-Hagane, 73(1987), No. 3, p. 74.
      [47]
      H. S. C. O'Neill, Free energies of formation of NiO, CoO, Ni2SiO4, and Co2SiO4, Am. Mineral., 72(1987), p. 280.
      [48]
      H. Mao, M. Hillert, M. Selleby, and B. Sundman, Thermodynamic assessment of the CaO-Al2O3-SiO2 system, J. Am. Ceram. Soc., 89(2006), No. 1, p. 298.
      [49]
      A. F. Guillermet, Assessing the thermodynamics of the Fe-Co-Ni system using a calphad predictive technique, Calphad, 13(1989), No. 1, p. 1.
      [50]
      A. F. Guillermet, Assessment of the thermodynamic properties of the Ni-Co system, Z. Metallkd., 78(1987), No. 9, p. 639.
      [51]
      I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman, and K. Ishida, Phase equilibria in the Fe-Co binary system, Acta Mater., 50(2002), No. 2, p. 379.
      [52]
      G. Cacciamani, A. Dinsdale, M. Palumbo, and A. Pasturel, The Fe-Ni system:thermodynamic modelling assisted by atomistic calculations, Intermetallics, 18(2010), No. 6, p. 1148.
      [53]
      A. T. Dinsdale, SGTE data for pure elements, Calphad, 15(1991), No. 4, p. 317.

    Catalog


    • /

      返回文章
      返回