留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 1
Jan.  2017
数据统计

分享

计量
  • 文章访问数:  627
  • HTML全文浏览量:  109
  • PDF下载量:  21
  • 被引次数: 0
R. Ahmad, M. B. A. Asmael, N. R. Shahizan, and S. Gandouz, Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp. 91-101. https://doi.org/10.1007/s12613-017-1382-9
Cite this article as:
R. Ahmad, M. B. A. Asmael, N. R. Shahizan, and S. Gandouz, Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp. 91-101. https://doi.org/10.1007/s12613-017-1382-9
引用本文 PDF XML SpringerLink
研究论文

Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition

  • 通讯作者:

    R. Ahmad    E-mail: roslee@uthm.edu.my

  • The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA CCTA). -The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, △TS, and low solidification temperature, △TS, whereas 0.1wt% Ce resulted in a fast solidification time, △ta-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index (Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.
  • Research Article

    Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition

    + Author Affiliations
    • The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA CCTA). -The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, △TS, and low solidification temperature, △TS, whereas 0.1wt% Ce resulted in a fast solidification time, △ta-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index (Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.
    • loading
    • [1]
      M. Dhiman, D. K. Dwivedi, R. Sehgal, and I. K. Bhat, Effect of iron on microstructure of Al-12Si-1Cu-0. 1Mg alloy, Mater. Manuf. Processes, 23(2008), No. 8, p. 805.
      [2]
      E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa, and R. MacKay, Factors influencing thermal conductivity and mechanical properties in 319 Al alloy cylinder heads, Mater. Sci. Eng. A, 648(2015), p. 401.
      [3]
      Y. Sui, Q. Wang, G. Wang, and T. Liu, Effects of Sr content on the microstructure and mechanical properties of cast Al-12Si-4Cu-2Ni-0. 8 Mg alloys, J. Alloys Compd., 622(2015), p. 572.
      [4]
      S. Farahany and A. Ourdjini, Effect of cooling rate and silicon refiner/modifier on solidification pathways of Al-11. 3Si-2Cu-0. 4Fe Alloy, Mater. Manuf. Processes, 28(2013), No. 6, p. 657.
      [5]
      A. M. Samuel, G. H. Garza-Elizondo, H. W. Doty, and F. H. Samuel, Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al-Si alloys, Mater. Des., 80(2015), p. 99.
      [6]
      S. Farahany, A. Ourdjini, and H. R. Bakhsheshi-Rad, Microstructure, mechanical properties and corrosion behavior of Al-Si-Cu-Zn-X (X=Bi, Sb, Sr) die cast alloy, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 28.
      [7]
      M. Ibrahim, E. Elgallad, S. Valtierra, H. Doty, and F. Samuel, Metallurgical parameters controlling the eutectic silicon charateristics in Be-treated Al-Si-Mg alloys, Materials, 9(2016), No. 2, p. 78.
      [8]
      W. R. Osório, D. R. Leiva, L. C. Peixoto, L. R. Garcia, and A. Garcia, Mechanical properties of Sn-Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology, J. Alloys Compd., 562(2013), p. 194.
      [9]
      W. R. Osório, L. C. Peixoto, M. V. Canté, and A. Garcia, Microstructure features affecting mechanical properties and corrosion behavior of a hypoeutectic Al-Ni alloy, Mater. Des., 31(2010), No. 9, p. 4485.
      [10]
      P. Donelan, Modelling microstructural and mechanical properties of ferritic ductile cast iron, Mater. Sci. Technol., 16(2000), No. 3, p. 261.
      [11]
      W. R. Osório, L. C. Peixoto, D. J. Moutinho, L. G. Gomes, I. L. Ferreira, and A. Garcia, Corrosion resistance of directionally solidified Al-6Cu-1Si and Al-8Cu-3Si alloys castings, Mater. Des., 32(2011), No. 7, p. 3832.
      [12]
      L. R. Garcia, W. R. Osório, and A. Garcia, The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy, Mater. Des., 32(2011), No. 5, p. 3008.
      [13]
      W. R. Osório, M. V. Canté, C. Brito, E. S. Freitas, and A. Garcia, Electrochemical behavior of an Al-Fe-Ni alloy affected by nano-sized intermetallic particles, Corrosion, 71(2014), No. 4, p. 510.
      [14]
      S. Boontein, N. Srisukhumbovornchai, J. Kajornchaiyakul and C. Limmaneevichitr, Reduction in secondary dendrite arm spacing in cast aluminium alloy A356 by Sb addition, Int. J. Cast Met. Res., 24(2011), No. 2, p. 108.
      [15]
      B. Pourbahari and M. Emamy, Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy, Mater. Des., 94(2016), p. 111.
      [16]
      H. Zhi, X. M. Ruan, and H. Yan, Effects of neodymium addition on microstructure and mechanical properties of near-eutectic Al-12Si alloys, Trans. Nonferrous Met. Soc. China, 25(2015), No. 12, p. 3877.
      [17]
      J. H. Li, X. D. Wang, T. H. Ludwig, Y. Tsunekawa, L. Arnberg, J. Z. Jiang, and P. Schumacher, Modification of eutectic Si in Al-Si alloys with Eu addition, Acta Mater., 84(2015), p. 153.
      [18]
      S. Alkahtani, E. Elgallad, M. Tash, A. Samuel, and F. Samuel, Effect of rare earth metals on the microstructure of Al-Si based alloys, Materials, 9(2016), No. 1, p. 45.
      [19]
      R. Ahmad and M. B. A. Asmael, Influence of cerium on microstructure and solidification of eutectic Al-Si piston alloy, Mater. Manuf. Processes, 31(2016), No. 15, p. 1948.
      [20]
      Y. C. Tsai, S. L. Lee, and C. K. Lin, Effect of trace Ce addition on the microstructures and mechanical properties of A356(Al-7Si-0. 35Mg) aluminum alloys, J. Chin. Inst. Eng., 34(2011), No. 5, p. 609.
      [21]
      Q. Li, T. Xia, Y. Lan, W. Zhao, L. Fan, and P. Li, Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al-20% Si alloy, J. Alloys Compd., 562(2013), No. 1, p. 25.
      [22]
      V. Vijeesh, M. Ravi, and K. Narayan Prabhu, The effect of the addition of strontium and cerium modifiers on microstructure and mechanical properties of hypereutectic Al-Si (LM30) alloy, Mater. Perform. Charact., 2(2013), No. 1, p. 296.
      [23]
      S. Kores, M. Vončina, B. Kosec, P. Mrvar, and J. Medved, Effect of cerium additions on the AlSi17 casting alloy, Mater. Technol., 44(2010), No. 3, p. 137.
      [24]
      M. Vončina, S. Kores, P. Mrvar, and J. Medved, Solidification and precipitation behaviour in the AlSi9Cu3 alloy with various Ce additions, Mater. Technol., 45(2011), No. 6, p. 549.
      [25]
      V. Vijeesh and K. N. Prabhu, Computer aided cooling curve analysis and microstructure of cerium added hypereutectic Al-Si (LM29) alloy, Trans. Indian Inst. Met., 67(2014), No. 4, p. 541.
      [26]
      V. Vijayan and K. Narayan Prabhu, Effect of chilling and cerium addition on microstructure and cooling curve parameters of Al-14% Si alloy, Can. Metall. Q., 54(2015), No. 1, p. 66.
      [27]
      W. Jiang, Z. Fan, Y. Dai, and C. Li, Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy, Mater. Sci. Eng. A, 597(2014), p. 237.
      [28]
      Z. M. Shi, Q. Wang, Y. T. Yu, G. Zhao, and R. Y. Zhang, Microstructure and mechanical properties of Gd-modified A356 aluminum alloys, J. Rare Earths, 33(2015), No. 9, p. 1004.
      [29]
      Y. Sui, Q. Wang, T. Liu, B. Ye, H. Jiang, and W. Ding, Influence of Gd content on microstructure and mechanical properties of cast Al-12Si-4Cu-2Ni-0. 8 Mg alloys, J. Alloys Compd., 644(2015), p. 228.
      [30]
      V. Vijeesh and K. N. Prabhu, The effect of cooling rate and cerium melt treatment on thermal analysis parameters and microstructure of hypoeutectic Al-Si alloy,[in] M. Hyland, Light Metals 2015, TMS, 2015, p. 403.
      [31]
      L. Heusler and W. Schneider, Influence of alloying elements on the thermal analysis results of Al-Si cast alloys, J. Light Met, 2(2002), No. 1, p. 17.
      [32]
      L. Lu, K. Nogita, and A. K. Dahle, Combining Sr and Na additions in hypoeutectic Al-Si foundry alloys, Mater. Sci. Eng. A, 399(2005), No. 1-2, p. 244.
      [33]
      J. Asensio-Lozano and B. Suarez-Peña, Effect of the addition of refiners and/or modifiers on the microstructure of die cast Al-12Si alloys, Scripta Mater., 54(2006), No. 5, p. 943.
      [34]
      X. P. Niu, B. H. Hu, I. Pinwill, and H. Li, Vacuum assisted high pressure die casting of aluminium alloys, J. Mater. Process. Technol., 105(2000), No. 1-2, p. 119.
      [35]
      M. Zhu, Z. Jian, L. Yao, C. Liu, G. Yang, and Y. Zhou, Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al-7. 0% Si-0. 3% Mg foundry aluminum alloys, J. Mater. Sci., 46(2011), No. 8, p. 2685.
      [36]
      S. G. Shabestari and M. Malekan, Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis, J. Alloys Compd., 492(2010), No. 1-2, p. 134.
      [37]
      J. Pavlović-Krstić, R. Bähr, G. Krstić, and S. Putić, The effect of mould temperature and cooling conditions on the size of secondary dendrite arm spacing in Al-7Si-3Cu alloy, Metalurgija, 15(2009), No. 2, p. 105.
      [38]
      M. B. Djurdjevic and G. Huber, Determination of rigidity point/temperature using thermal analysis method and mechanical technique, J. Alloys Compd., 590(2014), p. 500.
      [39]
      N. A. Nordin, S. Farahany, T. A. A. Bakar, E. Hamzah, and A. Ourdjini, Microstructure development, phase reaction characteristics and mechanical properties of a commercial Al-20% Mg2Si-xCe in situ composite solidified at a slow cooling rate, J. Alloys Compd., 650(2015), p. 821.
      [40]
      B. Langelier and S. Esmaeili, Effects of Ce additions on the age hardening response of Mg-Zn alloys, Mater. Charact., 101(2015), p. 1.
      [41]
      S. Farahany, M. H. Idris, A. Ourdjini, F. Faris, and H. Ghandvar, Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis, J. Therm. Anal. Calorim., 119(2015), No. 3, p. 1593.
      [42]
      Y. C. Tsai, C. Y. Chou, S. L. Lee, C. K. Lin, J. C. Lin, and S. W. Lim, Effect of trace La addition on the microstructures and mechanical properties of A356(Al-7Si-0. 35 Mg) aluminum alloys, J. Alloys Compd., 487(2009), No. 1-2, p. 157.
      [43]
      R. Ahmad and M. B. A. Asmael, Influence of lanthanum on solidification, microstructure, and mechanical properties of eutectic Al-Si piston alloy, J. Mater. Eng. Perform., 25(2016), No. 7, p. 2799.
      [44]
      A. Knuutinen, K. Nogita, S. D. McDonald, and A. K. Dahle, Modification of Al-Si alloys with Ba, Ca, Y and Yb, J. Light Met., 1(2001), No. 4, p. 229.
      [45]
      C. Gonzalez-Rivera, J. Baez, R. Chavez, A. Garcı́a, and J. Juarez-Islas, Quantification of the SiCp content in molten Al-Si/SiCp composites by computer aided thermal analysis, J. Mater. Process. Technol, 143-144(2003), p. 860.
      [46]
      S. Farahany, A. Ourdjini, M. H. Idris, and S. G. Shabestari, Computer-aided cooling curve thermal analysis of near eutectic Al-Si-Cu-Fe alloy, J. Therm. Anal. Calorim, 114(2013), No. 2, p. 705.
      [47]
      H. Qiu, H. Yan and Z. Hu, Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al-7Si-0. 7 Mg alloys, J. Alloys Compd., 567(2013), p. 77.
      [48]
      M. Malekan and S. G. Shabestari, Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy, Metall. Mater. Trans. A, 40(2009), No. 13, p. 3196.
      [49]
      J. M. Boileau and J. E. Allison, The effect of solidification time and heat treatment on the fatigue properties of a cast 319 aluminum alloy, Metall. Mater. Trans. A, 34(2003), No. 9, P. 1807.
      [50]
      R. I. Mackay and J. H. Sokolowski, Effect of Si and Cu concentrations and solidification rate on soundness in casting structure in Al-Si-Cu alloys, Int. J. Cast Met. Res., 23(2010), No. 1, p. 7.
      [51]
      M. Vončina, S. Kores, P. Mrvar and J. Medved, Effect of Ce on solidification and mechanical properties of A360 alloy, J. Alloys Compd., 509(2011), No. 27, p. 7349.
      [52]
      A. Hawksworth, W. M. Rainforth, and H. Jones, Solidification microstructure selection in the Al-rich Al-La, Al-Ce and Al-Nd systems, J. Cryst. Growth, 197(1999), No. 1-2, p. 286.
      [53]
      G. Y. An, L. X. Liu, and G. D. Gu, Effect of Ce on the interface stability and dendrite arm spacing of Al-Cu alloys, J. Cryst. Growth, 83(1987), No. 1, p. 96.
      [54]
      F. Mao, G. Yan, Z. Xuan, Z. Cao and T. Wang, Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys, J. Alloys Compd., 650(2015), p. 896.
      [55]
      Z. Hu, H. Yan, and Y. S. Rao, Effects of samarium addition on microstructure and mechanical properties of as-cast Al-Si-Cu alloy, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3228.
      [56]
      C. Xu, W. Xiao, S. Hanada, H. Yamagata, and C. Ma, The effect of scandium addition on microstructure and mechanical properties of Al-Si-Mg alloy:a multi-refinement modifier, Mater. Charact., 110(2015), p. 160.
      [57]
      Z. H. Li and H. Yan, Modification of primary α-Al, eutectic silicon and β-Al5FeSi phases in as-cast AlSi10Cu3 alloys with (La+Yb) addition, J. Rare Earths, 33(2015), No. 9, p. 995.
      [58]
      A. M. Samuel, F. H. Samuel, and H. W. Doty, Observations on the formation of β-Al5FeSi phase in 319 type Al-Si alloys, J. Mater. Sci., 31(1996), No. 20, p. 5529.
      [59]
      M. Zhang, X. Meng, R. Wu, C. Cui, and L. Wu, Effect of Ce on microstructures and mechanical properties of as-cast Mg-8Li-1Al alloys, Kovove Mater., 48(2010), No. 3, p. 211.
      [60]
      M. Ravi, U. Pillai, B. Pai, A. Damodaran, and E. S. Dwarakadasa, A study of the influence of mischmetal additions to Al-7Si-0. 3 Mg (LM 25/356) alloy, Metall. Mater. Trans. A, 27(1996), No. 5, p. 1283.
      [61]
      Q. G. Wang, Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357, Metall. Mater. Trans. A, 34(2003), No. 12, p. 2887.
      [62]
      M. Drouzy, S. Jacob and M. Richard, Interpretation of tensile results by means of quality index and probable yield strength, Int. J. Cast Met. Res., 5(1980), No. 2, p. 43.
      [63]
      S. Kores, M. Vončina, B. Kosec, and J. Medved, Formation of AlFeSi phase in AlSi12 alloy with Ce addition, Metalurgija, 51(2012), No. 2, p. 216.
      [64]
      O. El Sebaie, A. M. Samuel, F. H. Samuel, and H. W. Doty, The effects of mischmetal, cooling rate and heat treatment on the hardness of A319. 1, A356. 2 and A413. 1 Al-Si casting alloys, Mater. Sci. Eng. A, 486(2008), No. 1-2, p. 241.
      [65]
      Z. R. Nie, T. Jin, J. Fu, G. Xu, J. Yang, J. X. Zhou, and T. Y. Zuo, Research on rare earth in aluminum, Mater. Sci. Forum, 396-402(2002), p. 1731.

    Catalog


    • /

      返回文章
      返回