Characteristics of AZ31 Mg alloy joint using automatic TIG welding

Hong-tao Liu, Ji-xue Zhou, Dong-qing Zhao, Yun-teng Liu, Jian-hua Wu, Yuan-sheng Yang, Bai-chang Ma, Hai-hua Zhuang

分享

计量
  • 文章访问数:  558
  • HTML全文浏览量:  97
  • PDF下载量:  20
  • 被引次数: 17

目录

Cite this article as:

Hong-tao Liu, Ji-xue Zhou, Dong-qing Zhao, Yun-teng Liu, Jian-hua Wu, Yuan-sheng Yang, Bai-chang Ma, and Hai-hua Zhuang, Characteristics of AZ31 Mg alloy joint using automatic TIG welding, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp.102-108. https://dx.doi.org/10.1007/s12613-017-1383-8
Hong-tao Liu, Ji-xue Zhou, Dong-qing Zhao, Yun-teng Liu, Jian-hua Wu, Yuan-sheng Yang, Bai-chang Ma, and Hai-hua Zhuang, Characteristics of AZ31 Mg alloy joint using automatic TIG welding, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp.102-108. https://dx.doi.org/10.1007/s12613-017-1383-8
引用本文 PDF XML SpringerLink
研究论文

Characteristics of AZ31 Mg alloy joint using automatic TIG welding

基金项目: 

This work is supported by the National Key Research and Development Plan of China (Grant Nos. 2016YFB0701200 and 2016YFB0301105), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2015EQ019, BS2015CL016, and ZR2015YL007), and the Youth Foundation of Shandong Academy of Sciences, China (Grant No. 2016QN015).

    通信作者:

    Hong-tao Liu E-mail: hongtaoliu@sdas.org

The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.

 

Research Article

Characteristics of AZ31 Mg alloy joint using automatic TIG welding

Author Affilications
  • Funds: 

    This work is supported by the National Key Research and Development Plan of China (Grant Nos. 2016YFB0701200 and 2016YFB0301105), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2015EQ019, BS2015CL016, and ZR2015YL007), and the Youth Foundation of Shandong Academy of Sciences, China (Grant No. 2016QN015).

  • Received: 01 July 2016; Revised: 11 September 2016; Accepted: 17 September 2016;
The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.

 

  • T. M. Pollock, Weight Loss with Magnesium Alloys, Science, 328(2010), No. 5981, p. 986.

    M. K. Kulekci, Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol., 39(2008), No. 9, p. 851.

    H. Hu, A. Yu, N. Li, and J. E. Allison, Potential magnesium alloys for high temperature die cast automotive applications:a review, Mater. Manuf. Processes, 18(2003), No. 5, p. 687.

    J. Shen and N. Xu, Effect of preheat on TIG welding of AZ61 magnesium alloy, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 360.

    N. Xu, J. Shen, W. D. Xie, L. Z. Wang, D. Wang, and D. Min, Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates, Mater. Charact., 61(2010), No. 7, p. 713.

    C. M. Lin, H. L. Tsai, C. L. Lee, D. S. Chou, S. F. Lee, J. C. Huang, and J. W. Huang, Influence of CO2 laser welding parameters on the microstructure, metallurgy, and mechanical properties of Mg-Al alloys, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1114.

    L. M. Liu, G. Song, and M. S. Chi, Laser-tungsten inert gas hybrid welding of dissimilar AZ based magnesium alloys, Mater. Sci. Technol., 21(2005), No. 9, p. 1078.

    S. Mironov, T. Onuma, Y. S. Sato, and H. Kokawa, Microstructure evolution during friction-stir welding of AZ31 magnesium alloy, Acta Mater., 100(2015), p. 301.

    D. Wang, J. Shen, and L. Z. Wang, Effects of the types of overlap on the mechanical properties of FSSW welded AZ series magnesium alloy joints, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 231.

    Y. J. Quan, Z. H. Chen, X. S. Gong, and Z. H. Yu, Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31, Mater. Charact., 59(2008), No. 10, p. 1491.

    S. F. Su, H. K. Lin, J. C. Huang, and N. J. Ho, Electron-beam welding behavior in Mg-Al-based alloys, Metall. Mater. Trans. A, 33(2002), No. 5, p. 1461.

    S. T. Niknejad, L. Liu, T. Nguyen, M. -Y. Lee, S. Esmaeili, and N. Y. Zhou, Effects of heat treatment on grain-boundary β-Mg17Al12 and fracture properties of resistance spot-welded AZ80 Mg alloy, Metall. Mater. Trans. A, 44(2013), No. 8, p. 3747.

    M. Gao, S. W. Mei, Z. M. Wang, X. Y. Li, and X. Y. Zeng, Process and joint characterizations of laser-MIG hybrid welding of AZ31 magnesium alloy, J. Mater. Process. Technol., 212(2012), No. 6, p. 1338.

    T. P. Zhu, Z. W. Chen, and W. Gao, Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy, Mater. Charact., 59(2008), No. 11, p. 1550.

    L. Commin, M. Dumont, R. Rotinat, F. Pierron, J. E. Masse, and L. Barrallier, Texture evolution in Nd:YAG-laser welds of AZ31 magnesium alloy hot rolled sheets and its influence on mechanical properties, Mater. Sci. Eng. A, 528(2011), No. 4-5, p. 2049.

    S. Kou, Welding Metallurgy, Wiley, Hoboken, 2003, p. 175.

    W. F. Savage, C. D. Lundin, and A. H. Aronson, Weld metal solidification mechanics, Weld. J., 44(1965), p. s175.

    S. M. Chowdhury, D. L. Chen, S. D. Bhole, E. Powidajko, D. C. Weckman, and Y. Zhou, Microstructure and mechanical properties of fiber-laser-welded and diode-laser-welded AZ31 magnesium alloy, Metall. Mater. Trans. A, 42(2011), No. 7, p. 1974.

    B. S. Naik, D. L. Chen, X. Cao, and P. Wanjara, Microstructure and fatigue properties of a friction stir lap welded magnesium alloy, Metall. Mater. Trans. A, 44(2013), No. 8, p. 3732.

    J. F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Mater., 48(2003), No. 8, p. 1009.

Relative Articles

郭宁, 成奇, 付云龙, 高阳, 陈昊, 张帅, 张欣, 何金龙. 水下和陆上送丝式激光沉积铝合金的微观组织和显微硬度 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-022-2500-x

View details

Chang-qing Huang, Jia-xing Liu, Xiao-dong Jia. Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-019-1852-3

View details

Tapan Sarkar, Ajit Kumar Pramanick, Tapan Kumar Pal, Akshay Kumar Pramanick. Development of a new coated electrode with low nickel content for welding ductile iron and its response to austempering [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-018-1660-1

View details

Hao-yi Chi, Zhen-gui Yuan, Yan Wang, Min Zuo, De-gang Zhao, Hao-ran Geng. Glass-forming ability, microhardness, corrosion resistance, and dealloying treatment of Mg60-xCu40Ndx alloy ribbons [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-017-1454-x

View details

Zhong-wei Chen, Qin-ying Fan, Kai Zhao. Microstructure and microhardness of nanostructured Al-4.6Cu-Mn alloy ribbons [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-015-1143-6

View details

Yan-bin Jiang, Lei Guan, Guo-yi Tang, Bo Cheng, Da-bo Liu. Microstructure and texture evolution of Mg-3Zn-1Al magnesium alloy during large-strain electroplastic rolling [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-015-1087-x

View details

Suyitno, Budi Arifvianto, Teguh Dwi Widodo, Muslim Mahardika, Punto Dewo, Urip Agus Salim. Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-012-0676-1

View details

Danyang Dong, Changsheng Liu, Bin Zhang, Jun Miao. Pulsed Nd: YAG laser cladding of high silicon content coating on low silicon steel [J]. 矿物冶金与材料学报(英文版). DOI: 10.1016/S1005-8850(07)60063-2

View details

Kuibo Yin, Xiufang Bian, Na Han, Xiujun Yao, Yan Zhao, Jiankun Zhou. Effect of the addition of Al-Ti-C master alloy on the microstructure and microhardness of a cast Al-10Mg alloy [J]. 矿物冶金与材料学报(英文版). DOI: 10.1016/S1005-8850(06)60033-9

View details

Citing articles(17)

S. Srinivasan, R. Ravi Bharath, Andrej Atrens, et al. Fusion Welding of Magnesium Alloys: Process Variants, Metallurgical Challenges, and Structure–Property Relationships—A Critical Review. Journal of Materials Engineering and Performance, 2025. 必应学术
Gaurav Singh, Ashok Kumar Dewangan, Mohammad Faseeulla Khan, et al. Fundamental review on gas tungsten arc welding of magnesium alloys: challenges, innovations, and future perspectives. Welding in the World, 2025. 必应学术
Maroš Vyskoč, Mirjana Novaković, Jelena Potočnik, et al. Microstructure – Properties relationship in laser-welded AZ31B magnesium alloy. Materials Characterization, 2024, 208: 113664. 必应学术
More >

/

返回文章
返回