Cite this article as: |
Yong-sheng Sun, Yue-xin Han, Yan-feng Li, and Yan-jun Li, Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp. 123-129. https://doi.org/10.1007/s12613-017-1386-5 |
Yong-sheng Sun E-mail: yongshengsun@mail.neu.edu.cn
[1] |
S.X. Song, E.F. Campos-Toro, Y.M. Zhang, and A. Lopez-Valdivieso, Morphological and mineralogical characterizations of oolitic iron ore in the Exi region, China, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 113.
|
[2] |
W. Yu, T.C. Sun, Q. Cui, C.Y. Xu, and J. Kou, Effect of coal type on the reduction and magnetic separation of a high-phosphorus oolitic hematite ore, ISIJ Int., 55(2015), No. 3, p. 536.
|
[3] |
Y.S. Sun, Y.X. Han, P. Gao, Z.H. Wang, and D.Z. Ren, Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation, Int. J. Miner. Metall. Mater., 20(2013), No. 5, p. 411.
|
[4] |
M.J. Rao, C.Z. Ouyang, G.H. Li, S.H. Zhang, Y.B. Zhang, and T. Jiang, Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4, Int. J. Miner. Process., 143(2015), p. 72.
|
[5] |
H.Q. Tang, T.F. Qi, and Y.Q. Qin, Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char, JOM, 67(2015), No. 9, p. 1956.
|
[6] |
J.T. Gao, L. Guo, and Z.C. Guo, Concentrating of iron, slag and apatite phases from high phosphorous iron ore gaseous reduction product at 1473 K by super gravity, ISIJ Int., 55(2015), No. 12, p. 2535.
|
[7] |
W. Yu, T.C. Sun, Z.Z. Liu, J. Kou, and C.Y. Xu, Study on the strength of cold-bonded high-phosphorus oolitic hematite-coal composite briquettes, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 423.
|
[8] |
J. Kou, T. Sun, D. Tao, Y. Cao, and C. Xu, Coal-based direct reduction and magnetic separation of lump hematite ore, Miner. Metall. Process., 31(2014), No. 3, p. 150.
|
[9] |
T.J. Chun, H.M. Long, and J.X. Li, Alumina-iron separation of high alumina iron ore by carbothermic reduction and magnetic separation, Sep. Sci. Technol., 50(2015), No. 5, p. 760.
|
[10] |
U. Srivastava and S.K. Kawatra, Strategies for processing low-grade iron ore minerals, Miner. Process. Extr. Metall. Rev., 30(2009), No. 4, p. 361.
|
[11] |
K.Q. Li, W. Ni, M. Zhu, M.J. Zheng, and Y. Li, Iron extraction from oolitic iron ore by a deep reduction process, J. Iron Steel Res. Int., 18(2011), No. 8, p. 9.
|
[12] |
S.F. Li, Y.S. Sun, Y.X. Han, G.Q. Shi, and P. Gao, Fundamental research in utilization of an oolitic hematite by deep reduction, Adv. Mater. Res., 158(2011), p. 106.
|
[13] |
W. Yu, T.C. Sun, Z.Z. Liu, J. Kou, and C.Y. Xu, Effects of particle sizes of iron ore and coal on the strength and reduction of high phosphorus oolitic hematite-coal composite briquettes, ISIJ Int., 54(2014), No. 1, p. 56.
|
[14] |
G.H. Li, S.H. Zhang, M.J. Rao, Y.B. Zhang, and T. Jiang, Effects of sodium salts on reduction roasting and Fe-P separation of high-phosphorus oolitic hematite ore, Int. J. Miner. Process., 124(2013), p. 26.
|
[15] |
W. Yu, T.C. Sun, J. Kou, Y.X. Wei, C.Y. Xu, and Z.Z. Liu, The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets, ISIJ Int., 53(2013), No. 3, p. 427.
|
[16] |
C.Y. Xu, T.C. Sun, J. Kou, Y. Li, X. Mo, and L.G. Tang, Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent, Trans. Nonferrous Met. Soc. China, 22(2012), No. 11, p. 2806.
|
[17] |
Y.S. Sun, Y.X. Han, P. Gao, and D.Z. Ren, Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 331.
|
[18] |
G.H. Li, M.J. Rao, C.Z. Ouyang, S.H. Zhang, Z.W. Peng, and T. Jiang, Distribution characteristics of phosphorus in the metallic iron during solid-state reductive roasting of oolitic hematite ore, ISIJ Int., (2015), No. 1, p. 1.
|
[19] |
C. Cheng, Q.G. Xue, Y.Y. Zhang, F. Han, and J.S. Wang, Dynamic migration process and mechanism of phosphorus permeating into metallic iron with carburizing in coal-based direct reduction, ISIJ Int., 55(2015), No. 12, p. 2576.
|
[20] |
J.W. Cha, D.Y. Kim, and S.M. Jung, Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore, Metall. Mater. Trans. B, 46(2015), No. 5, p. 2165.
|
[21] |
Y.S. Sun, Y.X. Han, P. Gao, and Y.F. Mu, Particle size measurement of metallic iron in reduced materials based on optical image analysis, Chem. Eng. Technol., 37(2014), No. 12, p. 2030.
|
[22] |
Y.S. Sun, Y.X. Han, P. Gao, and J.W. Yu, Size distribution behavior of metallic iron particles in coal-based reduction products of an oolitic iron ore, Miner. Process. Extr. Metall. Rev., 36(2015), No. 4, p. 249.
|
[23] |
Y.X. Han, Y.S. Sun, P. Gao, Y.J. Li, and Y.F. Mu, Particle size distribution of metallic iron during coal-based reduction of an oolitic iron ore, Miner. Metall. Process., 31(2014), No. 3, p. 169.
|
[24] |
F. Chayes, On the bias of grain-size measurements made in thin section, J. Geol., 58(1950), No. 2, p. 156.
|
[25] |
H. Hu and B.B. Rath, On the time exponent in isothermal grain growth, Metall. Trans., 1(1970), No. 11, p. 3181.
|
[26] |
G.W. Yang, X.J. Sun, Q.L. Yong, Z.D. Li, and X.X. Li, Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel, J. Iron Steel Res. Int., 21(2014), No. 8, p. 757.
|
[27] |
S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee, Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels:Considering the effect of initial grain size on isothermal growth behavior, ISIJ Int., 44(2004), No. 7, p. 1230.
|
[28] |
J. Reis and R. Chaim, Densification maps for spark plasma sintering of nanocrystalline MgO ceramics:Particle coarsening and grain growth effects, Mater. Sci. Eng. A, 491(2008), No. 1-2, p. 356.
|
[29] |
R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics, Mater. Sci. Eng. A, 443(2007), No. 1-2, p. 25.
|