留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 2
Feb.  2017
数据统计

分享

计量
  • 文章访问数:  790
  • HTML全文浏览量:  158
  • PDF下载量:  20
  • 被引次数: 0
Mohamed Reda Boudchicha, Fausto Rubio, and Slimane Achour, Synthesis of glass ceramics from kaolin and dolomite mixture, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp. 194-201. https://doi.org/10.1007/s12613-017-1395-4
Cite this article as:
Mohamed Reda Boudchicha, Fausto Rubio, and Slimane Achour, Synthesis of glass ceramics from kaolin and dolomite mixture, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp. 194-201. https://doi.org/10.1007/s12613-017-1395-4
引用本文 PDF XML SpringerLink
研究论文

Synthesis of glass ceramics from kaolin and dolomite mixture

  • 通讯作者:

    Mohamed Reda Boudchicha    E-mail: boudred72@gmail.com

  • Cordierite-and anorthite-based binary glass ceramics of the CaO-MgO-Al2O3-SiO2 (CMAS) system were synthesized by mixing local and abundant raw minerals (kaolin and doloma by mass ratio of 82/18). A kinetics study reveals that the activation energy of crystallization (Ea) calculated by the methods of Kissinger and Marotta are 438 kJ·mol-1 and 459 kJ·mol-1, respectively. The Avrami parameter (n) is estimated to be approximately equal to 1, corresponding to the surface crystallization mechanism. X-ray diffraction (XRD) analysis shows that the anorthite and cordierite crystals are precipitated from the parent glass as major phases. Anorthite crystals first form at 850℃, whereas the µ-cordierite phase appears after heat treatment at 950℃. Thereafter, the cordierite allotropically transforms to α-cordierite at 1000℃. Complete densification is achieved at 950℃; however, the density slightly decreases at higher temperatures, reaching a stable value of 2.63 kg·m-3 between 1000℃ and 1100℃. The highest Vickers hardness of 6 GPa is also obtained at 950℃. However, a substantial decrease in hardness is recorded at 1000℃; at higher sintering temperatures, it slightly increases with increasing temperature as the α-cordierite crystallizes.
  • Research Article

    Synthesis of glass ceramics from kaolin and dolomite mixture

    + Author Affiliations
    • Cordierite-and anorthite-based binary glass ceramics of the CaO-MgO-Al2O3-SiO2 (CMAS) system were synthesized by mixing local and abundant raw minerals (kaolin and doloma by mass ratio of 82/18). A kinetics study reveals that the activation energy of crystallization (Ea) calculated by the methods of Kissinger and Marotta are 438 kJ·mol-1 and 459 kJ·mol-1, respectively. The Avrami parameter (n) is estimated to be approximately equal to 1, corresponding to the surface crystallization mechanism. X-ray diffraction (XRD) analysis shows that the anorthite and cordierite crystals are precipitated from the parent glass as major phases. Anorthite crystals first form at 850℃, whereas the µ-cordierite phase appears after heat treatment at 950℃. Thereafter, the cordierite allotropically transforms to α-cordierite at 1000℃. Complete densification is achieved at 950℃; however, the density slightly decreases at higher temperatures, reaching a stable value of 2.63 kg·m-3 between 1000℃ and 1100℃. The highest Vickers hardness of 6 GPa is also obtained at 950℃. However, a substantial decrease in hardness is recorded at 1000℃; at higher sintering temperatures, it slightly increases with increasing temperature as the α-cordierite crystallizes.
    • loading
    • [1]
      C.A. Harper, Handbook of Ceramics Glasses, and Diamonds, McGraw-Hill Professional, New York, 2001.
      [2]
      H. Bach and D. Krause, Low Thermal Expansion Glass ceramics, 2rd Ed., Springer, Berlin, 2005.
      [3]
      G. Patridge, An overview of glass ceramics:Part 1. Development and principal bulk applications, Glass Technol., 35(1994), No. 3, p. 116.
      [4]
      W. Pannhorst, Glass ceramics:state-of-the-art, J. Non Cryst. Solids, 219(1997), p. 198.
      [5]
      L.J. Shelestak, R.A. Chavez, and J.D. Mackenzie, Glasses and glass-ceramics from naturally occurring MgO-CaO-Al2O3-SiO2 materials (Ⅱ):crystallization behavior, J. Non Cryst. Solids, 27(1978), No. 1, p. 83.
      [6]
      L.J. Shelestak, R.A. Chavez, J.D. Mackenzie, and B. Dunn, Glasses and glass-ceramics from naturally occurring MgO-CaO-Al2O3-SiO2 materials (I):glass formation and properties, J. Non Cryst. Solids, 27(1978), No. 1, p. 75.
      [7]
      C. Yang, The sintering characteristics of MgO-CaO-Al2O3-SiO2 composite powder made by sol-gel method, Ceram. Int., (1998), p. 243.
      [8]
      J. Vila, C. Valentín, M.C. Muñoz, and J. Alarcón, Cristalización de cordierita en vidrios derivados del sistema cuaternario CaO-MgO-Al2O3-SiO2:influencia de la composición del vidrio, Bol. Soc. Esp. Cerám. Vidrio, 37(1998), No. 5, p. 390.
      [9]
      C. Leonelli, T. Manfredini, M. Paganelli, P. Pozzi, and G.C. Pellacani, Crystallization of some anorthite-diopside glass precursors, J. Mater. Sci., 26(1991), No. 18, p. 5041.
      [10]
      A. Alvarez-Méndez, L.C. Torres-González, N. Alvarez, and L.M. Torres-Martinez, Kinetic thermal analysis of glass ceramics from industrial wastes, J. Non Cryst. Solids, 329(2003), No. 1-3, p. 73.
      [11]
      L. Barbieri, A. Corradi, I. Lancellotti, A.P.N. Oliveira, and A. Orestes, Nucleation and crystal growth of a MgO-CaO-Al2O3-SiO2 glass with added steel fly ash, J. Am. Ceram. Soc., 85(2002), No. 3, p. 670.
      [12]
      T. Toya, Y. Tamura, Y. Kameshima, and K. Okada, Preparation and properties of CaO-MgO-Al2O3-SiO2 glass-ceramics from kaolin clay refining waste (Kira) and dolomite, Ceram. Int., 30(2004), No. 6, p. 983.
      [13]
      F.J. Torres and J. Alarcón, Effect of MgO/CaO ratio on the microstructure of cordierite-based glass-ceramic glazes for floor tiles, Ceram. Int., 31(2005), No. 5, p. 683.
      [14]
      F.J. Torres, E. Ruiz de Sola, and J. Alarcón, Effect of boron oxide on the microstructure of mullite-based glass-ceramic glazes for floor-tiles in the CaO-MgO-Al2O3-SiO2 system, J. Eur. Ceram. Soc., 26(2006), No. 12, p. 2285.
      [15]
      G.A. Khater, Glass-ceramics in the CaO-MgO-Al2O3-SiO2 system based on industrial waste materials, J. Non Cryst. Solids, 356(2010), No. 52-54, p. 3066.
      [16]
      N. Keyvani, V.K. Marghussian, H.R. Rezaie, and M. Kord, Effect of Al2O3 content on crystallization behavior, Microstructure, and mechanical properties of SiO2-Al2O3-CaOMgO glass-ceramics, Int. J. Appl. Ceram. Technol, 8(2011), No. 1, p. 203.
      [17]
      S. Jang and S. Kang, Influence of MgO/CaO ratio on the properties of MgO-CaO-Al2O3-SiO2 glass-ceramics for LED packages, Ceram. Int., 38(2012), No. 1, S543.
      [18]
      D.R. Bridge, D. Holland, and P.W. Macmillan, Development of the alpha-cordierite phase in glass ceramics for use in electronic devices, Glass Technol., 26(1985), No. 6, p. 286.
      [19]
      S.H. Knickerbocker, A.H. Kumar, and L.W. Herron, Cordierite glass-ceramics for multilayer ceramic packaging, Am. Ceram. Soc. Bull., 72(1993), No. 1, p. 90.
      [20]
      R.A. Gdula, Anorthite ceramic dielectrics, Am. Ceram. Soc. Bull., 50(1991), p. 555.
      [21]
      V.M.F. Marques, D.U. Tulyaganov, S. Agathopoulos, V. Kh. Gataullin, G.P. Kothiyal, and J.M.F. Ferreira, Low temperature synthesis of anorthite based glass-ceramics via sintering and crystallization of glass-powder compacts, J. Eur. Ceram. Soc., 26(2006), No. 13, p. 2503.
      [22]
      C.F. Yang and C.M. Cheng, The influence of B2O3 on the sintering of MgO-CaO-Al2O3-SiO2 composite glass powder, Ceram. Int., 25(1999), No. 4, p. 383.
      [23]
      C.M. Cheng, C.F. Yang, and S.H. Lo. The influence of crystallization on the flexural strength of MgO-CaO-Al2O3-SiO2 composite glass, Ceram. Int., 25(1999), No. 6, p. 581.
      [24]
      Y. Kobayashi and E. Kato, Low-temperature fabrication of anorthite ceramics, J. Am. Ceram. Soc., 77(1994), No. 3, p. 833.
      [25]
      M.R. Boudchicha, S. Achour, and A. Harabi, Crystallization and sintering of cordierite and anorthite based binary ceramics, J. Mater. Sci. Lett., 20(2001), No. 3, p. 215.
      [26]
      A. Harabi, M.R. Boudchicha, N. Aklouche, and S. Achour, Phase transformation in kaolin-doloma mixture, Key Eng. Mater., 206-213(2002), p. 111.
      [27]
      M.R. Boudchicha, S. Achour, A. Harabi, and J.P. Bonnet, Temperature dependence of Young's modulus in cordierite based ceramics, Algerian J. Adv. Mater., No. 5, 2008, p. 197.
      [28]
      M.R. Boudchicha, S. Achour, and J.P. Bonnet, Comportement thermique des melanges kaolin-dolomie, Verres Céram. Compos., 2(2012), No. 1, p. 26.
      [29]
      A. Capoglu, A novel low-clay translucent whiteware based on anorthite, J. Eur. Ceram. Soc., 31(2011), No. 3, p. 321.
      [30]
      X. Cheng, S. Ke, Q. Wang, H. Wang, A. Shui, and P. Liu, Fabrication and characterization of anorthite-based ceramic using mineral raw materials, Ceram. Int., 38(2012), No. 4, p. 3227.
      [31]
      M.U. Taskiran, N. Demirkol, and A. Capoglu, A new porcelainised stoneware material based on anorthite, J. Eur. Ceram. Soc., 25(2005), No. 4, p. 293.
      [32]
      W.A. Johnson and R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Association of the Institute of Mechanical Engineers, New York, 1939, p. 416.
      [33]
      M. Avrami, Kinetics of phase change:I. General theory, J. Chem. Phys., 7(1939), No. 12, p. 1103.
      [34]
      H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem., 29(1957), No. 11, p. 1702.
      [35]
      T. Ozawa, Kinetics of non-isothermal crystallization, Polymer, 12(1971), No. 3, p. 150.
      [36]
      N.P. Bansal and R.H. Doremus, Determination of reaction kinetic parameters from variable-temperature DSC or DTA, J. Therm. Anal., 29(1984), No. 1, p. 115.
      [37]
      A. Marotta, A. Buri, and F. Branda, Surface and bulk crystallization in non-isothermal devitrification of glasses, Thermochim. Acta, 40(1980), No. 3, p. 397.
      [38]
      A. Marotta, A. Buri, and F. Branda, Nucleation in glass and differential thermal analysis, J. Mater. Sci., 16(1981), No. 2, p. 341.
      [39]
      A. Marotta, S. Saiello, F. Branda, and A. Buri, Activation energy for the crystallization of glass from DDTA curves, J. Mater. Sci., 17(1982), No. 17, p. 105.
      [40]
      E.M. Marseglia, Kinetic theory of crystallization of amorphous materials, J. Non Cryst. Solids, 41(1980), No. 1, p. 31.
      [41]
      K. Matusita and S. Sakka, Kinetic study of the crystallization of glass by differential scanning calorimetry, Phys. Chem. Glasses, 20(1974), p. 81.
      [42]
      A.M. Hu, M. Li, and D.L. Mao, Crystallization of spodumene-diopside in the LAS glass ceramics with CaO and MgO addition, J. Therm. Anal. Calorim., 90(2007), No. 1, p. 185.
      [43]
      J.A. Augis and J.E. Benett, Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method, J. Therm. Anal. Calorim., 13(1978), No. 2, p. 283.

    Catalog


    • /

      返回文章
      返回