Cite this article as: |
Jian-bin Zhu and Hong Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3, Int. J. Miner. Metall. Mater., 24(2017), No. 3, pp. 309-315. https://doi.org/10.1007/s12613-017-1409-2 |
Hong Yan E-mail: hyan@ncu.edu.cn
[1] |
X.G. Deng, J.K. Wang, J.H. Liu, H.J. Zhang, F.L. Li, H.J. Duan, L.L Lu, Z. Huang, W.G. Zhao, and S.W. Zhang, Preparation and characterization of porous mullite ceramics via foam-gelcasting, Ceram. Int., 41(2015), No. 7, p. 9009.
|
[2] |
M.H. Talou and M.A. Camerucci, Processing of porous mullite ceramics using novel routes by starch consolidation casting, J. Eur. Ceram. Soc., 35(2015), No. 3, p. 1021.
|
[3] |
M.L. Chen, L. Zhu, Y.C. Dong, L.L. Li, and J. Liu, Waste-to-resource strategy to fabricate highly porous whisker-structured mullite ceramic membrane for simulated oil-in-water emulsion wastewater treatment, ACS Sustain. Chem. Eng., 4(2016), No. 4, p. 2098.
|
[4] |
G.L. Chen, H. Qi, W.H. Xing, and N.P. Xu, Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering, J. Membr. Sci., 318(2008), No. 1-2, p. 38.
|
[5] |
Y.C. Dong, S. Hampshire, J.E. Zhou, B. Lin, Z.L. Ji, X.Z. Zhang, and G.Y. Meng, Recycling of fly ash for preparing porous mullite membrane supports with titania addition, J. Hazard. Mater., 180(2010), No. 1-3, p. 173.
|
[6] |
J.J. Cao, X.F. Dong, L.L. Li, Y.C. Dong, and S. Hampshire, Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity, J. Eur. Ceram. Soc., 34(2014), No. 13, p. 3181.
|
[7] |
L. Zhu, Y.C. Dong, S. Hampshire, S. Cerneaux, and L. Winnubst, Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance, J. Eur. Ceram. Soc., 35(2015), No. 2, p. 711.
|
[8] |
L. Zhu, Y.C. Dong, L.L. Li, J. Liu, and S.J. You, Coal fly ash industrial waste recycling for fabrication of mullite-whisker-structured porous ceramic membrane supports, RSC Adv., 5(2015), No. 15, p. 11163.
|
[9] |
H.R. Qian, Y.H. Wang, X.D. Cheng, H.P. Zhang, and R.F. Zhang, Preparation of porous mullite ceramics using fly ash cenosphere as a pore-forming agent by gelcasting process, Int. J. Appl. Ceram. Technol., 11(2014), No. 5, p. 858.
|
[10] |
H.S. Guo, W.F. Li, and F.B. Ye, Low-cost porous mullite ceramic membrane supports fabricated from kyanite by casting and reaction sintering, Ceram. Int., 42(2016), No. 4, p. 4819.
|
[11] |
J.H. Li, H.W. Ma, and W.H. Huang, Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite, J. Hazard. Mater., 166(2009), No. 2-3, p. 1535.
|
[12] |
Q.K. Lü, X.F. Dong, Z.W. Zhu, and Y.C. Dong, Environment-oriented low-cost porous mullite ceramic membrane supports fabricated from coal gangue and bauxite, J. Hazard. Mater., 273(2014), No. 6, p. 136.
|
[13] |
Z.P. Hou, B.X. Cui, L.L. Liu, and Q. Liu, Effect of the different additives on the fabrication of porous kaolin-based mullite ceramics, Ceram. Int., 42(2016), No. 15, p. 17254.
|
[14] |
Y.C. Dong, J. Diwu, X.F. Feng, X.Y. Feng, X.Q. Liu, and G.Y. Meng, Phase evolution and sintering characteristics of porous mullite ceramics produced from the flyash-Al(OH)3 coating powders, J. Alloys Compd., 460(2008), No. 1-2, p. 651.
|
[15] |
T.Y. Yang, H.B. Ji, S.Y. Yoon, B.K. Kim, and H.C. Park, Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries, Resour. Conserv. Recycl., 54(2010), No. 11, p. 816.
|
[16] |
J.H. Lee, H.J. Choi, S.Y. Yoon, B.K. Kim, and H. C. Park, Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique, J. Porous Mater., 20(2013), No. 1, p. 219.
|
[17] |
S.H. Li, H.Y. Du, A.R. Guo, and D. Yang, Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in fly ash body, Ceram. Int., 38(2012), No. 2, p. 1027.
|
[18] |
R.S. Blissett and N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel, 97(2012), p. 1.
|
[19] |
S. Akpinar, I.M. Kusoglu, O. Ertugrul, and K. Onel, In situ mullite foam fabrication using microwave energy, J. Eur. Ceram. Soc., 32(2012), No. 4, p. 843.
|
[20] |
Y.C. Dong, X.Y. Feng, X.F. Feng, Y.W. Ding, X.Q. Liu, and G.Y. Meng, Preparation of low-cost mullite ceramics from natural bauxite and industrial waste fly ash, J. Alloys Compd., 460(2008), No. 1-2, p. 599.
|
[21] |
L.L. Li, X.F. Dong, Y.C. Dong, Y.M. Zheng, L. Zhu, and J. Liu, Thermal conversion of hazardous metal copper via the preparation of CuAl2O4 spinel-based ceramic membrane for potential stabilization of simulated copper-rich waste, ACS Sustain. Chem. Eng., 3(2015), No. 11, p. 2611.
|
[22] |
L.L. Li, X.F Dong, Y.C. Dong, L. Zhu, S.J. You, and Y.F Wang, Incorporation of zinc for fabrication of low-cost spinel-based composite ceramic membrane support to achieve its stabilization, J. Hazard. Mater., 287(2015), p. 188.
|
[23] |
J. Liu, Y.C. Dong, X.F. Dong, S. Hampshire, L. Zhu, Z.W. Zhu, and L.L. Li, Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite, J. Eur. Ceram. Soc., 36(2016), No. 4, p. 1059.
|
[24] |
P. Sarin, W. Yoon, R.P. Haggerty, C. Chiritescu, N.C. Bhorkar, and W.M. Kriven, Effect of transition-metal-ion doping on high temperature thermal expansion of 3:2 mullite:an in situ, high temperature, synchrotron diffraction study, J. Eur. Ceram. Soc., 28(2008), No. 2, p. 353.
|