留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 4
Apr.  2017
数据统计

分享

计量
  • 文章访问数:  463
  • HTML全文浏览量:  84
  • PDF下载量:  13
  • 被引次数: 0
Sung Jin Kim, Kang Mook Ryu, and Min-suk Oh, Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 415-422. https://doi.org/10.1007/s12613-017-1422-5
Cite this article as:
Sung Jin Kim, Kang Mook Ryu, and Min-suk Oh, Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp. 415-422. https://doi.org/10.1007/s12613-017-1422-5
引用本文 PDF XML SpringerLink
研究论文

Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency

  • 通讯作者:

    Sung Jin Kim    E-mail: sjkim56@sunchon.ac.kr

    Min-suk Oh    E-mail: misoh@kitech.re.kr

  • The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy (TDS) with gas chromatography (GC).The precise nature of the precipitate particles newly formed in the weld metal by the addition of Ce and Y to a certain alloy system was characterized.Moreover,the hydrogen trapping efficiency expressed as the reduction of the diffusible hydrogen in the weld metal was analyzed.The results showed that the addition of Ce and/or Y to this alloy system led to the formation of a mixed type of (Ce,Ti)-based oxide,(Y,Ni)-based carbide,or (Ce,Y,Ti)-based oxide particles.Because of the high activation energy of the mixed type of particles (≥ 150 kJ/mol),the trapping efficiency for hydrogen was considered to be sufficiently high to effectively reduce the diffusible hydrogen content.
  • Research Article

    Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency

    + Author Affiliations
    • The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy (TDS) with gas chromatography (GC).The precise nature of the precipitate particles newly formed in the weld metal by the addition of Ce and Y to a certain alloy system was characterized.Moreover,the hydrogen trapping efficiency expressed as the reduction of the diffusible hydrogen in the weld metal was analyzed.The results showed that the addition of Ce and/or Y to this alloy system led to the formation of a mixed type of (Ce,Ti)-based oxide,(Y,Ni)-based carbide,or (Ce,Y,Ti)-based oxide particles.Because of the high activation energy of the mixed type of particles (≥ 150 kJ/mol),the trapping efficiency for hydrogen was considered to be sufficiently high to effectively reduce the diffusible hydrogen content.
    • loading
    • [1]
      M. Pitrun, The Effect of Welding Parameters on Levels of Diffusible Hydrogen in Weld Metal Deposited Using Gas Shielded Rutile Flux Cored Wires[Dissertation], University of Wollongong, Australia, 2004, p. 83.
      [2]
      G. K. Padhy and Y. I. Komizo, Diffusible hydrogen in steel weldments, Trans. JWRI, 42(2013), No. 1, p. 39.
      [3]
      J.Ćwiek, Hydrogen degradation of high-strength steels, J. Achiev. Mater. Manuf. Eng., 37(2009), No. 2, p. 193.
      [4]
      S. S. Glickstein, Temperature measurements in a free burning arc, Weld. J., 55(1976), p. 222.
      [5]
      B. Chew, Prediction of weld metal hydrogen levels obtained under test conditions, Weld. J., 52(1973), p. 386.
      [6]
      D. Y. Kim, I. S. Hwang, D. C. Kim, and M. J. Kang, Effect of preheat temperature on diffusible hydrogen content in weld metal deposited using flux cored wire, J. Weld. Joining, 32(2014), No. 2, p. 18.
      [7]
      D. McKeown, Hydrogen and its control in weld metal, Met. Construct., 17(1985), No. 10, p. 655.
      [8]
      S. A. Gedeon and T. W. Eagar, Thermochemical analysis of hydrogen absorption in welding, Weld. J., 69(1990), p. 264.
      [9]
      I. Maroef, D. L. Olson, M. Eberhart, and G. R. Edwards, Hydrogen trapping in ferritic steel weld metal, Int. Mater. Rev., 47(2002), No. 4, p. 191.
      [10]
      Y. D. Park, C. Lensing, I. Maroef, D. L. Olson, and Z. Gavra, Advances in hydrogen management for high strength steel,[in] Proceedings of the 9th CF/DRDC Meeting on Naval Applications of Materials Technology, Dartmouth, Nova Scotia, Canada, 2001.
      [11]
      H. Granjon, Cold cracking in welding of steels, Indian Weld. J., 5(1973), No. 2, p. 43.
      [12]
      H. G. Lee and J. Y. Lee, Hydrogen trapping by TiC particles in iron, Acta Metall., 32(1984), No. 1, p. 131.
      [13]
      G. M. Pressouyre and I. M. Bernstein, A quantitative analysis of hydrogen trapping, Metall. Trans. A, 9(1978), No. 11, p. 1571.
      [14]
      B. A. Szost, R. H. Vegter, and P. E. J. Rivera-Díaz-del-Castillo, Developing bearing steels combining hydrogen resistance and improved hardness, Mater. Des., 43(2013), p. 499.
      [15]
      S. Yamasaki and H. K. D. H. Bhadeshia, M4C3 precipitation in Fe-C-Mo-V steels and relationship to hydrogen trapping, Proc. R. Soc. Ser. A, 462(2006), No. 2072, p. 2315.
      [16]
      H. G. Lee and J. Y. Lee, The interaction of hydrogen with the interface of Al2O3 particles in iron, Metall. Trans. A, 17(1986), No. 12, p. 2183.
      [17]
      H. H. Podgurski and R. A. Oriani, Nitrogenation of Fe-Al alloys:Ⅲ. Absorption of hydrogen in nitrogenated Fe-Al alloys, Metall. Trans., 3(1972), p. 2055.
      [18]
      I. Maroef, C. Lensing, Y. D. Park, A. Landau, and D. L. Olson, Joining of advanced and specialty materials Ⅱ,[in] Proceedings of the International Conference on Materials Solution'99, Ohio, USA, 1999.
      [19]
      C. A. Lensing, Y. D. Park, I. S. Maroef, and D. L. Olson, Yttrium hydrogen trapping to manage hydrogen in HSLA steel welds, Weld. J., 83(2004), p. 254.
      [20]
      W. Y. Choo and J. Y. Lee, Thermal analysis of trapped hydrogen in pure iron, Metall. Trans. A, 13(1982), No. 1, p. 135.
      [21]
      H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem., 29(1957), No. 11, p. 1702.
      [22]
      W. W. Wang, Alloying Composition for Self-shielded FCAW Wires with Low Diffusible Hydrogen and High Charpy V-notch Impact Toughness, US Patent, Appl. 13/792462, 2014.
      [23]
      J. S. Yoo, G. Xian, M. J. Lee, Y. D. Kim, and N. H. Kang, Hydrogen embrittlement resistance and diffusible hydrogen desorption behavior of multipass FCA weld metals, J. Weld. Joining, 31(2013), No. 6, p. 112.
      [24]
      Y. S. Chun, J. S. Kim, K. T. Park, Y. K. Lee, and C. S. Lee, Role of ε martensite in tensile properties and hydrogen degradation of high-Mn steels, Mater. Sci. Eng. A, 533(2012), p. 87.
      [25]
      J. S. Kim, Y. H. Lee, D. L. Lee, K. T. Park, and C. S. Lee, Microstructural influences on hydrogen delayed fracture of high strength steels, Mater. Sci. Eng. A, 505(2009), No. 1-2, p. 105.
      [26]
      J. H. Ryu, Y. S. Chun, C. S. Lee, H. K. D. H. Bhadeshia, and D. W. Suh, Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel, Acta Mater., 60(2012), No. 10, p. 4085.
      [27]
      S. Liu, C. Clasper, K. Moline, and J. Scott, Ultra-low hydrogen consumables for welding of high strength steels with 690-750 MPa-yield strength,[in] Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 2006. p. 661.
      [28]
      S. M. Lee and J. Y. Lee, The effect of the interface character of TiC particles on hydrogen trapping in steel, Acta Metall., 35(1987), No. 11, p. 2695.

    Catalog


    • /

      返回文章
      返回