Cite this article as: |
Zi-qiang Pi, Xin Lu, Yuan Wu, Lu-ning Wang, Cheng-chang Jia, Xuan-hui Qu, Wei Zheng, Li-zhi Wu, and Qing-li Shao, Simulation of jet-flow solid fraction during spray forming, Int. J. Miner. Metall. Mater., 24(2017), No. 6, pp. 657-669. https://doi.org/10.1007/s12613-017-1448-8 |
Xin Lu E-mail: luxin@ustb.edu.cn
Xuan-hui Qu E-mail: quxh@ustb.edu.cn.
[1] |
R.A. Mesquita and C.A. Barbosa, Spray forming high speed steel-properties and processing, Mater. Sci. Eng. A, 383(2004), No. 1, p. 87.
|
[2] |
A. Schulz, V. Uhlenwinkel, C. Escher, R. Kohlmannc, A. Kulmburgd, M.C. Monteroe, R. Rabitschf, W. Schützenhöferf, D. Stocchig, and D. Vialeh, Opportunities and challenges of spray forming high-alloyed steels, Mater. Sci. Eng. A, 477(2008), No. 1-2, p. 69.
|
[3] |
G.Q. Zhang, H. Yuan, D.L. Jiao, Z. Li, Y. Zhang, and Z.W. Liu, Microstructure evolution and mechanical properties of T15 high speed steel prepared by twin-atomiser spray forming and thermo-mechanical processing, Mater. Sci. Eng. A, 558(2012), p. 566.
|
[4] |
Y. Xu, C.C. Ge, and Q. Shu, Microstructure, tensile properties and heat treatment process of spray formed FGH95 superalloy, J. Iron Steel Res. Int., 20(2013), No. 4, p. 59.
|
[5] |
H.A. Godinho, A.L.R. Beletati, E.J. Giordano, and C. Bolfarini, Microstructure and mechanical properties of a spray formed and extruded AA7050 recycled alloy, J. Alloys Compd., 586(2014), Suppl.1, p. 139.
|
[6] |
Y.D. Jia, F.Y. Cao, S. Scudino, P. Ma, H.C. Li, L. Yu, J. Eckert, and J.F. Sun, Microstructure and thermal expansion behavior of spray-deposited Al-50Si, Mater. Des., 57(2014), p. 585.
|
[7] |
R.D. Cava, C. Bolfarini, C.S. Kiminami, E.M. Mazzer, W.J.B. Filho, P. Gargarella, and J. Eckert, Spray forming of Cu-11.85Al-3.2Ni-3Mn (wt%) shape memory alloy, J. Alloys Compd., 615(2014), suppl.1, p. 602.
|
[8] |
P.S. Grant, B. Cantor, and L. Katgerman, Modelling of droplet dynamic and thermal histories during spray forming:I. Individual droplet behaviour, Acta Metall. Mater., 41(1993), No. 11, p. 3097.
|
[9] |
P.S. Grant, B. Cantor, and L. Katgerman, Modelling of droplet dynamic and thermal histories during spray forming:Ⅱ. Effect of process parameters, Acta Metall. Mater., 41(1993), No. 11, p. 3109.
|
[10] |
P.S. Grant and B. Cantor, Modelling of droplet dynamic and thermal histories during spray forming:Ⅲ. Analysis of spray solid fraction, Acta Metall. Mater., 43(1995), No. 3, p. 913.
|
[11] |
J. Mi and P.S. Grant, Modelling the shape and thermal dynamics of Ni superalloy rings during spray forming:Part 1. Shape modeling-Droplet deposition, splashing and redeposition, Acta Mater., 56(2008), No. 7, p. 1588.
|
[12] |
J. Mi and P.S. Grant, Modelling the shape and thermal dynamics of Ni superalloy rings during spray forming:Part 2. Thermal modelling-Heat flow and solidification, Acta Mater., 56(2008), No. 7, p. 1597.
|
[13] |
W.D. Cai and E.J. Lavernia, Modeling of porosity during spray forming:Part I. Effects of processing parameters, Metall. Mater. Trans. B, 29(1998), No. 5, p. 1085.
|
[14] |
W.D. Cai and E.J. Lavernia, Modeling of porosity during spray forming:Part Ⅱ. Effects of atomization gas chemistry and alloy compositions, Metall. Mater. Trans. B, 29(1998), No. 5, p. 1097.
|
[15] |
S. Kang and D.H. Chang, Modelling of billet shapes in spray forming using a scanning atomizer, Mater. Sci. Eng. A, 260(1999), No. 1-2, p. 161.
|
[16] |
J.H. Hattel, N.H. Pryds, and T.B. Pedersen, An integrated numerical model for the prediction of Gaussian and billet shapes, Mater. Sci. Eng. A, 383(2004), No. 12, p. 184.
|
[17] |
C.S. Cui and A. Schulz, Modeling and simulation of spray forming of clad deposits with graded interface using two scanning gas atomizers, Metall. Mater. Trans. B, 44(2013), No. 4, p. 1030.
|
[18] |
J. Mi, P.S. Grant, U. Fritsching, O. Belkessam, I. Garmendia, and A. Landaberea, Multiphysics modelling of the spray forming process, Mater. Sci. Eng. A, 477(2008), No. 1-2, p. 2.
|
[19] |
X. Jiang, G.A. Siamas, K. Jagus, and T.G. Karayiannis, Physical modelling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays, Prog. Energy Combust. Sci., 36(2010), No. 2, p. 131.
|
[20] |
J. Gao, S.W. Park, Y. Wang, R.D. Reitza, S. Moon, and K. Nishida, Simulation and analysis of group-hole nozzle sprays using a gas jet superposition model, Fuel, 89(2010), No. 12, p. 3758.
|
[21] |
J. Du and Z.Y. Wei, Numerical analysis of pileup process in metal microdroplet deposition manufacture, Int. J. Therm. Sci., 96(2015), p. 35.
|
[22] |
Q.Q. Lu, J.R. Fontaine, and G. Aubertin, Numerical study of the solid particle motion in grid-generated turbulent flows, Int. J. Heat Mass Transfer, 36(1993), No. 1, p. 79.
|
[23] |
E.S. Lee and S. Ahn, Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming, Acta Metall. Mater., 42(1994), No. 9, p. 3231.
|
[24] |
P. Mathur, D. Apelian, and A. Lawley, Analysis of the spray deposition process, Acta Metall., 37(1989), No. 2, p. 429.
|
[25] |
C.G. Levi and R. Mehrabian, Heat flow during rapid solidification of undercooled metal droplets, Metall. Trans. A., 13(1982), No. 2, p. 221.
|
[26] |
J.E. Smith and M.L. Jordan, Mathematical and graphical interpretation of the log-normal law for particle size distribution analysis, J. Colloid Sci., 19(1964), No. 6, p. 549.
|
[27] |
H. Lubanska, Correlation of spray ring data for gas atomization of liquid metals, JOM, 22(1970), No. 2, p. 45.
|