Cite this article as: |
Hao-yi Chi, Zhen-gui Yuan, Yan Wang, Min Zuo, De-gang Zhao, and Hao-ran Geng, Glass-forming ability, microhardness, corrosion resistance, and dealloying treatment of Mg60-xCu40Ndx alloy ribbons, Int. J. Miner. Metall. Mater., 24(2017), No. 6, pp. 708-717. https://doi.org/10.1007/s12613-017-1454-x |
Min Zuo E-mail: zmcj5992@163.com,mse_zuom@ujn.edu.cn
[1] |
W.J. Botta, J.E. Berger, C.S. Kiminami, V. Roche, R.P. Nogueira, and C. Bolfarini, Corrosion resistance of Fe-based amorphous alloys, J. Alloys Compd., 586(2014), Suppl. 1, p. S105.
|
[2] |
A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(2000), No. 1, p. 279.
|
[3] |
S. Jayalakshmi, S. Sahu, S. Sankaranarayanan, S. Gupta, and M. Gupta, Development of novel Mg-Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response, Mater. Des., 53(2014), p. 849.
|
[4] |
J.F. Wang, S. Huang, Y.Y. Wei, S.F. Guo, and F.S. Pan, Enhanced mechanical properties and corrosion resistance of a Mg-Zn-Ca bulk metallic glass composite by Fe particle addition, Mater. Lett., 91(2013), p. 311.
|
[5] |
T. Muthiah, C. Aguilar, D. Guzman, and S. Kumaran, Synthesis and characterization of mechanical alloyed Mg-Ni-Ca and Mg-Cu-Ca amorphous alloys, Procedia Mater. Sci., 9(2015), p. 428.
|
[6] |
Z.P. Lu and C.T Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater., 50(2002), No. 13, p. 3501.
|
[7] |
S.G. Kim, A. Inoue, and T. Masumoto, High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region, Mater. Trans. JIM, 31(1990), No. 11, p. 929.
|
[8] |
Y.D. Sun, Q.R. Chen, and G.Z. Li, Enhanced glass forming ability and plasticity of Mg-based bulk metallic glass by minor addition of Cd, J. Alloys Compd., 584(2014), p. 273.
|
[9] |
K.J. Laws, D. Granata, and J.F. Löffler, Alloy design strategies for sustained ductility in Mg-based amorphous alloys-Tackling structural relaxation, Acta Mater., 103(2016), p. 735.
|
[10] |
X.B. Ge, L.Y. Chen, L. Zhang, Y.R. Wen, A. Hirata, and M.W. Chen, Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production, Adv. Mater., 26(2014), No. 19, p. 3100.
|
[11] |
Y. Yang, G.D. Ruan, C.S. Xiang, G. Wang, and J.M. Tour, Flexible three-dimensional nanoporous metal-based energy devices, J. Am. Chem. Soc., 136(2014), No. 17, p. 6187.
|
[12] |
M.R. Ryder and J.C. Tan, Nanoporous metal organic framework materials for smart applications, Mater. Sci. Technol., 30(2014), No. 13, p. 1598.
|
[13] |
N.D. Hoa, N.V. Duy, S.A. El-Safty, and N. Van Hieu, Meso-/Nanoporous semiconducting metal oxides for gas sensor applications, J. Nanomater., 16(2015), No. 1, art. No. 972025.
|
[14] |
Z. Wang, J.Y. Liu, C.L. Qin, H. Yu, X.C. Xia, C.Y. Wang, Y.S. Zhang, Q.F. Hu, and W.M. Zhao, Dealloying of Cu-based metallic glasses in acidic solutions:products and energy storage applications, Nanomaterials, 5(2015), No. 2, p. 697.
|
[15] |
Y. Ding, Y.J. Kim, and J. Erlebacher, Nanoporous gold leaf:"ancient technology"/advanced material, Adv. Mater., 16(2004), No. 21, p. 1897.
|
[16] |
T. Fujita, T. Tokunaga, L. Zhang, D. Li, L. Chen, S. Arai, Y. Yamamoto, A. Hirata, N.Tanaka, Y. Ding, and M. Chen, Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold, Nano Lett.,14(2014), No. 3, p. 1172.
|
[17] |
S.H. Kim, J.B. Choi, Q.N. Nguyen, J.M. Lee, S. Park, T.D. Chung, and J.Y. Byun, Nanoporous platinum thin films synthesized by electrochemical dealloying for nonenzymatic glucose detection, Phys. Chem. Chem. Phys., 15(2013), No. 16, p. 5782.
|
[18] |
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Evolution of nanoporosity in dealloying, Nature, 410(2001), No. 6827, p. 450.
|
[19] |
X.K. Luo, R. Li, L. Huang, and T. Zhang, Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses, Corros. Sci., 67(2013), No. 1, p. 100.
|
[20] |
A. Hrubý, Evaluation of glass-forming tendency by means of DTA, Czech. J. Phys., 22(1972), No. 11, p. 1187.
|
[21] |
D. Turnbull, Under what conditions can a glass be formed, Contemp. Phys., 10(1969), No. 5, p. 473.
|
[22] |
A. Inoue, High strength bulk amorphous alloys with low critical cooling rates, Mater. Trans. JIM, 36(1995), No. 7, p. 866.
|
[23] |
H.S. Chen and D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses, Acta Metall., 17(1969), No. 8, p. 1021.
|
[24] |
Z.P. Lu and C.T. Liu, Glass formation criterion for various glass-forming systems, Phys. Rev. Lett., 91(2003), No. 11, art. No. 115505.
|
[25] |
X.H. Du, J.C. Huang, C.T. Liu, and Z.P. Lu, New criterion of glass forming ability for bulk metallic glasses, J. Appl. Phys., 101(2007), No. 8, art. No. 086108.
|
[26] |
A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline Materials:Preparation, Properties, and Applications, Vol. 3, Springer Science & Business Media, New York, 2013.
|
[27] |
X.Y. Liu, Z. Xiang, J.C. Niu, K.D. Xia, Y. Yang, B. Yan, and W. Lu, The corrosion behaviors of amorphous, nanocrystalline and crystalline Ni-W alloys coating, Int. J. Electrochem. Sci., 10(2015), No. 11, p. 9042.
|
[28] |
C.A.C. Souza, S.E. Kuri, F.S Politti, J.E. May, and C.S. Kiminami, Corrosion resistance of amorphous and polycrystalline FeCuNbSiB alloys in sulphuric acid solution, J. Non Cryst. Solids, 247(1999), No.1-3, p. 69.
|
[29] |
X. Li, F. Lv, Y.X. Geng, F. Qi, Y.J. Xu, F. Liu, and Y.X. Wang, Preparation and corrosion property of (Cu50Zr50)(100-x) Ndx amorphous alloy, Int. J. Electrochem. Sci., 12(2017), p. 726.
|
[30] |
W.H. Jiang, F.X. Liu, Y.D. Wang, H.F. Zhang, H. Choo, and P.K. Liaw, Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses, Mater. Sci. Eng. A, 430(2006), No. 1-2, p. 350.
|
[31] |
E.G. Seebauer and C.E. Allen, Estimating surface diffusion coefficients, Prog. Surf. Sci., 49(1995), No. 3, p. 265.
|
[32] |
J.M. Dona and J. Gonzalez-Velasco, Mechanism of surface diffusion of gold adatoms in contact with an electrolytic solution, J. Phys. Chem., 97(1993), No. 18, p. 4714.
|
[33] |
A.A. Vega and R.C. Newman, Nanoporous metals fabricated through electrochemical dealloying of Ag-Au-Pt with systematic variation of Au:Pt ratio, J. Electrochem. Soc., 161(2014), No. 1, p. C1.
|
[34] |
Z.H. Dan, F.X. Qin, Y. Sugawara, I. Muto, and N. Hara, Dependency of the formation of Au-stabilized nanoporous copper on the dealloying temperature, Microporous Mesoporous Mater., 186(2014), p. 181.
|
[35] |
J. Erlebacher, An atomistic description of dealloying:porosity evolution, the critical potential, and rate-limiting behavior, J. Electrochem. Soc., 151(2004), No. 10, p. C614.
|
[36] |
P. Vanýsek, Electrochemical Series in Handbook of Chemistry and Physics, 92nd Ed., Chemical Rubber Company, Boca Raton, 2011.
|
[37] |
J.R. Fuhr and W.L. Wiese, CRC Handbook of Chemistry and Physics, Chemical Rubber Company, Boca Raton, 2005.
|
[38] |
A.J. Bard, R. Parsons, and J. Jordan, Standard Potentials in Aqueous Solution, International Union of Pure and Applied Chemistry, New York, 1985.
|