留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 7
Jul.  2017
数据统计

分享

计量
  • 文章访问数:  630
  • HTML全文浏览量:  136
  • PDF下载量:  27
  • 被引次数: 0
Jian-fang Lü, Zhe-nan Jin, Hong-ying Yang, Lin-lin Tong, Guo-bao Chen,  and Fa-xin Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 756-767. https://doi.org/10.1007/s12613-017-1459-5
Cite this article as:
Jian-fang Lü, Zhe-nan Jin, Hong-ying Yang, Lin-lin Tong, Guo-bao Chen,  and Fa-xin Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 756-767. https://doi.org/10.1007/s12613-017-1459-5
引用本文 PDF XML SpringerLink
研究论文

Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags

  • 通讯作者:

    Zhe-nan Jin    E-mail: jinzn@smm.neu.edu.cn

  • An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The[FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.
  • Research Article

    Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags

    + Author Affiliations
    • An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The[FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.
    • loading
    • [1]
      F. Méar, P. Yot, M. Cambon, and M. Ribes, The characterization of waste cathode-ray tube glass, Waste Manage., 26(2006), No. 12, p. 1468.
      [2]
      Y.C. Jang and T.G. Townsend, Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates, Environ. Sci. Technol., 37(2003), No. 20, p. 4778.
      [3]
      Q.B. Xu, G.M. Li, W.Z. He, J.W. Huang, and X. Shi, Cathode ray tube (CRT) recycling:current capabilities in China and research progress, Waste Manage., 32(2012), No. 8, p. 1566.
      [4]
      J.R. Gregory, M.C. Nadeau, and R.E. Kirchain, Evaluating the economic viability of a material recovery system:the case of cathode ray tube glass, Environ. Sci. Technol., 43(2009), No. 24, p. 9245.
      [5]
      E. Bernardo, R. Cedro, M. Florean, and S. Hreglich, Reutilization and stabilization of wastes by the production of glass foams, Ceram. Int., 33(2007), No. 6, p. 963.
      [6]
      Z. Matamoros-Veloza, J.C. Rendón-Angeles, K. Yanagisawa, M.A. Cisneros-Guerrero, M.M. Cisneros-Guerrero, and L. Aguirre, Preparation of foamed glasses from CRT TV glass by means of hydrothermal hot-pressing technique, J. Eur. Ceram. Soc., 28(2008), No. 4, p. 739.
      [7]
      F. Méar, P. Yot, R. Viennois, and M. Ribes, Mechanical behaviour and thermal and electrical properties of foam glass, Ceram. Int., 33(2007), No. 4, p. 543.
      [8]
      F. Andreola, L. Barbieri, A. Corradi, I. Lancellotti, R. Falcone, and S. Hreglich, Glass-ceramics obtained by the recycling of end of life cathode ray tubes glasses, Waste Manage., 25(2005), No. 2, p. 183.
      [9]
      E. Bernardo, Micro- and macro-cellular sintered glassceramics from wastes, J. Eur. Ceram. Soc., 27(2007), No. 6, p. 2415.
      [10]
      T.C. Ling and C.S. Poon, Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar, J. Hazard. Mater., 192(2011), No. 2, p. 451.
      [11]
      T.C. Ling and C.S. Poon, Effects of particle size of treated CRT funnel glass on properties of cement mortar, Mater. Struct., 46(2013), No. 1, p. 25.
      [12]
      H. Miyoshi, D.P. Chen, and T. Akai, A novel process utilizing subcritical water to remove lead from wasted lead silicate glass, Chem. Lett., 33(2004), No. 8, p. 956.
      [13]
      K. Pruksathorn and S. Damronglerd, Lead recovery from waste frit glass residue of electronic plant by chemical-electrochemical methods, Korean J. Chem. Eng., 22(2005), No. 6, p. 873.
      [14]
      A.J. Saterlay, S.J. Wilkins, and R.G. Compton, Towards greener disposal of waste cathode ray tubes via ultrasonically enhanced lead leaching, Green Chem., 3(2001), No. 4, p. 149.
      [15]
      W.Y. Yuan, J.H. Li, Q.W. Zhang, and F. Saito, Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass, Environ. Sci. Technol., 46(2012), No. 7, p. 4109.
      [16]
      R. Sasai, H. Kubo, M. Kamiya, and H. Itoh, Development of an eco-friendly material recycling process for spent lead glass using a mechanochemical process and Na2EDTA reagent, Environ. Sci. Technol., 42(2008), No. 11, p. 4159.
      [17]
      M.J. Chen, F.S. Zhang, and J.X. Zhu, Lead recovery and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process, J. Hazard. Mater., 161(2009), No. 2-3, p. 1109.
      [18]
      X.W. Lu, K.M. Shih, C.S. Liu, and F. Wang, Extraction of metallic lead from cathode ray tube (CRT) funnel glass by thermal reduction with metallic iron, Environ. Sci. Technol., 47(2013), No. 17, p. 9972.
      [19]
      T. Okada and S. Yonezawa, Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass, Waste Manage., 33(2013), No. 8, p. 1758.
      [20]
      M.F. Xing and F.S. Zhang, Nano-lead particle synthesis from waste cathode ray-tube funnel glass, J. Hazard. Mater., 194(2011), No. 5, p. 407.
      [21]
      M.F. Xing, Y.P. Wang, J. Li, and H. Xu, Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process, J. Hazard. Mater., 305(2016), p. 51.
      [22]
      J.F. Lv, H.Y. Yang, Z.N. Jin, Z.Y. Ma, and Y. Song, Feasibility of lead extraction from waste Cathode-Ray-Tubes (CRT) funnel glass through a lead smelting process, Waste Manage., 57(2016), p. 198.
      [23]
      M. Chen, S. Raghunath, and B.J. Zhao, Viscosity measurements of SiO2-"FeO" -MgO system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 45(2014), No. 1, p. 58.
      [24]
      A. Kondratiev, E. Jak, and P.C. Hayes, Predicting slag viscosities in metallurgical systems, JOM, 54(2002), No. 11, p. 41.
      [25]
      A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman, Experimental investigation of the viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 slags, Metall. Mater. Trans. B, 38(2007), No. 6, p. 911.
      [26]
      H.S. Park, S.S. Park, and I. Sohn, The viscous behavior of FeOt-Al2O3-SiO2 copper smelting slags, Metall. Mater. Trans. B, 42(2011), No. 4, p. 692.
      [27]
      M. Chen, S. Raghunath, and B.J. Zhao, Viscosity of SiO2-"FeO" -Al2O3 system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 44(2013), No. 4, p. 820.
      [28]
      F. Shahbazian, D. Sichen, and S. Seetharaman, The effect of addition of Al2O3 on the viscosity of CaO-"FeO" -SiO2-CaF2 slags, ISIJ Int., 42(2002), No. 2, p. 155.
      [29]
      Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283.
      [30]
      J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1291.
      [31]
      Z.J. Wang, Q.F. Shu, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang, Effect of P2O5 and FetO on the viscosity and slagstructure in steelmaking slags, Metall. Mater. Trans. B, 46(2015), No. 2, p. 758.
      [32]
      E. Jak, B. Zhao, and P.C. Hayes, Experimental study of phase equilibria in the systems Fe-Zn-O and Fe-Zn-Si-O at metallic iron saturation, Metall. Mater. Trans. B, 31(2000), No. 6, p. 1195.
      [33]
      H.Y. Shi, L.G. Chen, A. Malfliet, P.T. Jones, B. Blanpain, and M.X. Guo, Study of phase relations of ZnO-containing fayalite slag under Fe saturation, Metall. Mater. Trans. B, 47(2016), No. 5, p. 2820.
      [34]
      Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang, Effects of basicity and MgO content on the viscosity of the SiO2-CaO-MgO-9wt% Al2O3 slag system, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 353.
      [35]
      C. Feng, M.S. Chu, J. Tang, J. Qin, F. Li, and Z.G. Liu, Effects of MgO and TiO2 on the viscous behaviors and phase compositions of titanium-bearing slag, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 868.
      [36]
      W.H. Kim, I. Sohn, and D.J. Min, A study on the viscous behaviour with K2O additions in the CaO-SiO2-Al2O3-MgO-K2O quinary slag system, Steel Res. Int., 81(2010), No. 9, p. 735.
      [37]
      K.J. Schumacher, J.F. White, and J.P. Downey, Viscosities in the calcium-silicate slag system in the range of 1798 K to 1973 K (1525℃ to 1700℃), Metall. Mater. Trans. B, 46(2015), No. 1, p. 119.
      [38]
      L.S. Wu, J. Gran, and S. Du, The effect of calcium fluoride on slag viscosity, Metall. Mater. Trans. B, 42(2011), No. 5, p. 928.
      [39]
      L. Wang, Y.R. Cui, J. Yang, C. Zhang, D.X. Cai, J.Q. Zhang, Y. Sasaki, and O. Ostrovski, Melting properties and viscosity of SiO2-CaO-Al2O3-B2O3 system, Steel Res. Int., 86(2015), No. 6, p. 670.
      [40]
      J.H. Park, D.J. Min, and H.S. Song, Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2(-MgO)-Al2O3 slags, Metall. Mater. Trans. B, 35(2004), No. 2, p. 269.
      [41]
      H. Kim, W.H. Kim, I. Sohn, and D.J. Min, The effect of MgO on the viscosity of the CaO-SiO2-20wt% Al2O3-MgO slag system, Steel Res. Int., 81(2010), No. 4, p. 261.
      [42]
      H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, D.J. Min, and I. Sohn, Effect of Al2O3 and CaO/SiO2 on the iscosity of calcium-silicate-based slags containing 10 mass pct MgO, Metall. Mater. Trans. B, 44(2012), No. 1, p. 5.
      [43]
      Z.J. Wang, Y.Q. Sun, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang, Effect of Al2O3 on the viscosity and structure of CaO-SiO2-MgO-Al2O3-FetO slags, Metall. Mater. Trans. B, 46(2015), No. 2, p. 537.
      [44]
      N. Saito, N. Hori, K. Nakashima, and K. Mori, Viscosity of blast furnace type slags, Metall. Mater. Trans. B, 34(2003), No. 5, p. 509.
      [45]
      J.P. Yu, L.J. Wang, Y.X. Wang, Y.Q. Liu, and G.Z. Zhou, Effect of Fe2+ and Fe3+ on the properties of melts containing FeO x, J. Iron Steel Res., 26(2014), No. 10, p. 1.
      [46]
      H. Park, J.Y. Park, G.H. Kim, and I. Sohn, Effect of TiO2 on the viscosity and slag structure in blast furnace type slags, Steel Res. Int., 83(2012), No. 2, p. 150.
      [47]
      K. Zheng, Z.T. Zhang, L.L. Liu, and X.D. Wang, Investigation of the viscosity and structural properties of CaO-SiO2-TiO2 slags, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1389.
      [48]
      B.O. Mysen, L.W. Finger, D. Virgo, and F.A. Seifert, Curve-fitting of Raman spectra of silicate glasses, Am. Mineral., 67(1982), No. 7-8, p. 686.
      [49]
      G. Lucazeau, N. Sergent, T. Pagnier, A. Shaula, V. Kharton, and F.M.B. Marques, Raman spectra of apatites:La10-xSi6-y (Al,Fe)yO26±δ, J. Raman Spectrosc., 38(2007), No. 1, p. 21.
      [50]
      D.L.A. de Faria, S.V. Silva, and M.T. de Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc., 28(1997), No. 11, p. 873.

    Catalog


    • /

      返回文章
      返回