留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 7
Jul.  2017
数据统计

分享

计量
  • 文章访问数:  655
  • HTML全文浏览量:  121
  • PDF下载量:  13
  • 被引次数: 0
Peng Zhou, Jun-hong Chen, Meng Liu, Peng Jiang, Bin Li, and Xin-mei Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2-18 GHz range, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 804-813. https://doi.org/10.1007/s12613-017-1464-8
Cite this article as:
Peng Zhou, Jun-hong Chen, Meng Liu, Peng Jiang, Bin Li, and Xin-mei Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2-18 GHz range, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 804-813. https://doi.org/10.1007/s12613-017-1464-8
引用本文 PDF XML SpringerLink
研究论文Open Access

Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2-18 GHz range

  • 通讯作者:

    Xin-mei Hou    E-mail: houxinmeiustb@ustb.edu.cn

  • To enhance the microwave absorption performance of silicon carbide nanowires (SiCNWs), SiO2 nanoshells with a thickness of approximately 2 nm and Fe3O4 nanoparticles were grown on the surface of SiCNWs to form SiC@SiO2@Fe3O4 hybrids. The microwave absorption performance of the SiC@SiO2@Fe3O4 hybrids with different thicknesses was investigated in the frequency range from 2 to 18 GHz using a free-space antenna-based system. The results indicate that SiC@SiO2@Fe3O4 hybrids exhibit improved microwave absorption. In particular, in the case of an SiC@SiO2 to iron(Ⅲ) acetylacetonate mass ratio of 1:3, the microwave absorption with an absorber of 2-mm thickness exhibited a minimum reflection loss of -39.58 dB at 12.24 GHz. With respect to the enhanced microwave absorption mechanism, the Fe3O4 nanoparticles coated on SiC@SiO2 nanowires are proposed to balance the permeability and permittivity of the materials, contributing to the microwave attenuation.
  • Research ArticleOpen Access

    Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2-18 GHz range

    + Author Affiliations
    • To enhance the microwave absorption performance of silicon carbide nanowires (SiCNWs), SiO2 nanoshells with a thickness of approximately 2 nm and Fe3O4 nanoparticles were grown on the surface of SiCNWs to form SiC@SiO2@Fe3O4 hybrids. The microwave absorption performance of the SiC@SiO2@Fe3O4 hybrids with different thicknesses was investigated in the frequency range from 2 to 18 GHz using a free-space antenna-based system. The results indicate that SiC@SiO2@Fe3O4 hybrids exhibit improved microwave absorption. In particular, in the case of an SiC@SiO2 to iron(Ⅲ) acetylacetonate mass ratio of 1:3, the microwave absorption with an absorber of 2-mm thickness exhibited a minimum reflection loss of -39.58 dB at 12.24 GHz. With respect to the enhanced microwave absorption mechanism, the Fe3O4 nanoparticles coated on SiC@SiO2 nanowires are proposed to balance the permeability and permittivity of the materials, contributing to the microwave attenuation.
    • loading
    • [1]
      M. Yu, C.Y. Liang, M.M. Liu, X.L. Liu, K.P. Yuan, H. Cao, and R.C. Che, Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption, J. Mater. Chem. C, 2(2014), p. 7275.
      [2]
      H. Sun, R.H. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, and H.S. Peng, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities, Adv. Mater., 26(2014), No. 48, p. 8120.
      [3]
      W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li, C.Y. Wang, and H.F. Ju, Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding, Carbon, 77(2014), p. 130.
      [4]
      E. Vázquez and M. Prato, Carbon nanotubes and microwaves:interactions, responses, and applications, ACS Nano, 3(2009), No. 12, p. 3819.
      [5]
      W.L. Song, X.T. Guan, L.Z. Fan, Y.B. Zhao, W.Q. Cao, C.Y. Wang, and M.S. Cao, Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites, Carbon, 100(2016), p. 109.
      [6]
      J.L. Kuang and W.B. Cao, Silicon carbide whiskers:preparation and high dielectric permittivity, J. Am. Ceram. Soc., 96(2013), p. 2877.
      [7]
      S.L. Chen, P.Z. Ying, L. Wang, G.D. Wei, F.M. Gao, J.J. Zheng, M.H. Shang, Z.B. Yang, W.Y. Yang, and T. Wu, Highly flexible and robust N-doped SiC nanoneedle field emitters, NPG Asia Mater., 7(2015), p. e157.
      [8]
      H.J. Yang, J. Yuan, Y. Li, Z.L. Hou, H.B. Jin, X.Y. Fang, and M.S. Cao, Silicon carbide powders:temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range, Solid State Commun., 163(2013), p. 1.
      [9]
      M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, and J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites, Carbon, 48(2010), No. 3, p. 788.
      [10]
      L.B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, C.B. Tang, P.K. Tan, C.R. Deng, and S. Matitsine, Recent progress in some composite materials and structures for specific electromagnetic applications, Int. Mater. Rev., 58(2013), No. 4, p. 203.
      [11]
      X.W. Yin, L. Kong, L.T. Zhang, L.F. Cheng, N. Travitzky, and P. Greil, Electromagnetic properties of Si-C-N based ceramics and composites, Int. Mater. Rev., 59(2014), No. 6, p. 326.
      [12]
      L. Kong, X.W. Yin, Y.J. Zhang, X.Y. Yuan, Q. Li, F. Ye, L.F. Cheng, and L.T. Zhang, Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters, J. Phys. Chem. C, 117(2013), No. 38, p. 19701.
      [13]
      W.Y. Duan, X.W. Yin, F. Ye, Q. Li, M.K. Han, X.F. Liu, and Y.Z. Cai, Synthesis and EMW absorbing properties of nano SiC modified PDC-SiOC, J. Mater. Chem. C, 4(2016), p. 5962.
      [14]
      D.P. Sun, Q. Zou, G.Q. Qian, C. Sun, W. Jiang, and F.S. Li, Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties, Acta Mater., 61(2013), No. 15, p. 5829.
      [15]
      X.S. Zhang, B. Meng, F.Y. Zhu, W. Tang, and H.X. Zhang, Switchable wetting and flexible SiC thin film with nanostructures for microfluidic surface-enhanced Raman scattering sensors, Sens. Actuators A, 208(2014), p. 166.
      [16]
      J.H. Chen, F.M. Zhai, M. Liu, X.M. Hou, and K.C. Chou, SiC nanowires with tunable hydrophobicity/hydrophilicity and their application as nanofluids, Langmuir, 32(2016), No. 23, p. 5909.
      [17]
      Y.J. Zhang, J.H. Chen, H.L. Fan, K.C. Chou, and X.M. Hou, Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors, Dalton Trans., 44(2015), No. 46, p. 19974.
      [18]
      L. Zhang, H.P. Shao, H. Zheng, T. Lin, and Z.M. Guo, Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1112.
      [19]
      S.E. Mousavi Ghahfarokhi, S. Hosseini, and M. Zargar Shoushtari, Fabrication of SrFe12-xNixO19 nanoparticles and investigation on their structural, magnetic and dielectric properties, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 876.
      [20]
      C.H. Gong, J.W. Zhang, C. Yan, X.Q. Cheng, J.W. Zhang, L.G. Yu, Z.S. Jin, and Z.J. Zhang, Synthesis and microwave electromagnetic properties of nanosized titanium nitride, J. Mater. Chem., 22(2012), No. 8, p. 3370.
      [21]
      W.B. Weir, Automatic measurements of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE, 62(1974), No. 1, p. 33.
      [22]
      J.H. Chen, W.N. Liu, T. Yang, B. Li, J.D. Su, X.M. Hou, and K.C. Chou, A facile synthesis of a three-dimensional flexible 3C-SiC sponge and its wettability, Cryst. Growth Des., 14(2014), No. 9, p. 4624.
      [23]
      J.H. Chen, Y.J. Zhang, X.M. Hou, L. Su, H.L. Fan, and K.C. Chou, Fabrication and characterization of ultra-light SiC whiskers decorated by RuO2 nanoparticles as hybrid supercapacitors, RSC Adv., 6(2016), No. 23, p. 19626.
      [24]
      Z.J. Wang, L.N. Wu, J.G. Zhou, W. Cai, B.Z. Shen, and Z.H. Jiang, Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber, J. Phys. Chem. C, 117(2013), No. 10, p. 5446.
      [25]
      Z.S. Wu, S.B. Yang, Y. Sun, K. Parvez, X.L. Feng, and K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, J. Am. Chem. Soc., 134(2012), No. 22, p. 9082.
      [26]
      T. Pirzada, S.A. Arvidson, C.D. Saquing, S.S. Shah, and S.A. Khan, Hybrid silica-PVA nanofibers via sol-gel electrospinning, Langmuir, 28(2012), No. 13, p. 5834.
      [27]
      L.W. Lin, Synthesis and optical property of large-scale centimetres-long silicon carbide nanowires by catalyst-free CVD route under superatmospheric pressure conditions, Nanoscale, 3(2011), No. 4, p. 1582.
      [28]
      H.S. Mansur, C.M. Sadahira, A.N. Souza, and A.A.P. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Mater. Sci. Eng. C, 28(2008), No. 4, p. 539.
      [29]
      D.L.A. de Faria, S.V. Silva, and M.T. de Oliveira, Ramanmicrospectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc., 28(1997), No. 11, p. 873.
      [30]
      X. Huang, J. Zhuang, D. Chen, H. Liu, F. Tang, X. Yan, X. Meng, L. Zhang, and J. Ren, General strategy for designing functionalized magnetic microspheres for different bioapplications, Langmuir, 25(2009), No. 19, p. 11657.
      [31]
      K. Kim, M. Kim, J. Kim, and J. Kim, Magnetic filler alignment of paramagnetic Fe3O4 coated SiC/epoxy composite for thermal conductivity improvement, Ceram. Int., 41(2015), No. 9, p. 12280.
      [32]
      T. Yoon, C. Chae, Y.K. Sun, X. Zhao, H.H. Kung, and J.K. Lee, Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes, J. Mater. Chem., 21(2011), No. 43, p. 17325.
      [33]
      K. Shimoda, J.S. Park, T. Hinoki, and A. Kohyama, Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basic powder characteristics, Appl. Surf. Sci., 253(2007), No. 24, p. 9450.
      [34]
      D.P. Sun, Q. Zou, Y.P. Wang, Y.J. Wang, W. Jiang, and F.S. Li, Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption, Nanoscale, 6(2014), No. 12, p. 6557.
      [35]
      Y.J. Chen, M.S. Cao, T.H. Wang, and Q. Wan, Microwave absorption properties of the ZnO nanowire-polyester composites, Appl. Phys. Lett., 84(2004), No. 17, p. 3367.
      [36]
      X.L. Su, W.C. Zhou, Z.M. Li, F. Luo, H.L. Du, and D.M. Zhu, Preparation and dielectric properties of B-doped SiC powders by combustion synthesis, Mater. Res. Bull., 44(2009), No. 4, p. 880.
      [37]
      Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao, and X.Y. Fang, Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods, J. Appl. Phys., 106(2009), No. 5, art. No. 054303.
      [38]
      Y.J. Chen, G. Xiao, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y. Ma, P. Gao, C.L. Zhu, M.S. Cao, and H.B. Jin, Porous Fe3O4/carbon core/shell nanorods:synthesis and electromagnetic properties, J. Phys. Chem. C, 115(2011), p. 10061.
      [39]
      Y.J. Chen, F. Zhang, G.G. Zhao, X.Y. Fang, H.B. Jin, P. Gao, C.L. Zhu, M.S. Cao, and G. Xiao, Synthesis, multi-nonlinear dielectric resonance and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods, J. Phys. Chem. C, 114(2010), No. 20, p. 9239.
      [40]
      M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Hou, Z.L. Yuan, and J. Yuan, Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption, ACS Appl. Mater. Interfaces, 4(2012), No. 12, p. 6949.
      [41]
      S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, and K.S. Churn, Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies, IEEE Trans. Magn., 27(1991), No. 6, p. 5462.
      [42]
      S.C. Chiu, H.C. Yu, and Y.Y. Li, High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range, J. Phys. Chem. C, 114(2010), No. 4, p. 1947.
      [43]
      H.J. Yang, M.S. Cao, Y. Li, H.L. Shi, Z.L. Hou, X.Y. Fang, H.B. Jin, W.Z. Wang, and J. Yuan, Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings, Adv. Opt. Mater., 2(2014), No. 3, p. 214.
      [44]
      S. Xie, G.Q. Jin, S. Meng, Y.W. Wang, Y. Qin, and X.Y. Guo, Microwave absorption properties of in situ grown CNTs/SiC composites, J. Alloys Compd., 520(2012), p. 295.
      [45]
      R.B. Yang, P.M. Reddy, C.J. Chang, P.A. Chen, J.K. Chen, and C.C. Chang, Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties:Role of carbon nanotube and polypyrrole content, Chem. Eng. J., 285(2016), p. 497.
      [46]
      Z.J. Wang, L.N. Wu, J.G. Zhou, B.Z. Shen, and Z.H. Jiang, Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell, RSC Adv., 3(2013), p. 3309.
      [47]
      L.G. Yan, J.B. Wang, X.H. Han, Y. Ren, Q.F. Liu, and F.S. Li, Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell, Nanotechnology, 21(2010), No. 9, art. No. 095708.
      [48]
      C.C. Lee and C.H. Chen, Ag nanoshell-induced dualfrequency electromagnetic wave absorption of Ni nanoparticles, Appl. Phys. Lett., 90(2007), No. 19, art. No. 193102.

    Catalog


    • /

      返回文章
      返回