留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 8
Aug.  2017
数据统计

分享

计量
  • 文章访问数:  459
  • HTML全文浏览量:  73
  • PDF下载量:  13
  • 被引次数: 0
Lavish Kumar Singh, Alok Bhadauria, Amirthalingam Srinivasan, Uma Thanu Subramonia Pillai, and Bellambettu Chandrasekhara Pai, Effects of gadolinium addition on the microstructure and mechanical properties of Mg-9Al alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, pp. 901-908. https://doi.org/10.1007/s12613-017-1476-4
Cite this article as:
Lavish Kumar Singh, Alok Bhadauria, Amirthalingam Srinivasan, Uma Thanu Subramonia Pillai, and Bellambettu Chandrasekhara Pai, Effects of gadolinium addition on the microstructure and mechanical properties of Mg-9Al alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, pp. 901-908. https://doi.org/10.1007/s12613-017-1476-4
引用本文 PDF XML SpringerLink
研究论文

Effects of gadolinium addition on the microstructure and mechanical properties of Mg-9Al alloy

  • 通讯作者:

    Uma Thanu Subramonia Pillai    E-mail: utspillai@rediffmail.com

  • This research aims to study the significance of Gd addition (0wt%-2wt%) on the microstructure and mechanical properties of Mg-9Al alloy. The effect of Gd addition on the microstructure was investigated via X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Mg-9Al alloy contained two phases, α-Mg and β-Mg17Al12. Alloying with Gd led to the emergence of a new rectangular-shaped phase, Al2Gd. The grain size also decreased marginally upon Gd addition. The ultimate tensile strength and microhardness of Mg-9Al alloy increased by 23% and 19%, respectively, upon 1.5wt% Gd addition. We observed that, although Mg-9Al-2.0Gd alloy exhibited the smallest grain size (181 μm) and the highest dislocation density (5.1×1010 m-2) among the investigated compositions, the Mg-9Al-1.5Gd alloy displayed the best mechanical properties. This anomalous behavior was observed because the Al2Gd phase was uniformly distributed and present in abundance in Mg-9Al-1.5Gd alloy, whereas it was coarsened and asymmetrically conglomerated in Mg-9Al-2.0Gd.
  • Research Article

    Effects of gadolinium addition on the microstructure and mechanical properties of Mg-9Al alloy

    + Author Affiliations
    • This research aims to study the significance of Gd addition (0wt%-2wt%) on the microstructure and mechanical properties of Mg-9Al alloy. The effect of Gd addition on the microstructure was investigated via X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Mg-9Al alloy contained two phases, α-Mg and β-Mg17Al12. Alloying with Gd led to the emergence of a new rectangular-shaped phase, Al2Gd. The grain size also decreased marginally upon Gd addition. The ultimate tensile strength and microhardness of Mg-9Al alloy increased by 23% and 19%, respectively, upon 1.5wt% Gd addition. We observed that, although Mg-9Al-2.0Gd alloy exhibited the smallest grain size (181 μm) and the highest dislocation density (5.1×1010 m-2) among the investigated compositions, the Mg-9Al-1.5Gd alloy displayed the best mechanical properties. This anomalous behavior was observed because the Al2Gd phase was uniformly distributed and present in abundance in Mg-9Al-1.5Gd alloy, whereas it was coarsened and asymmetrically conglomerated in Mg-9Al-2.0Gd.
    • loading
    • [1]
      J.M. Kim, S.G. Lee, J.S. Park, and H.G. Kim, Laser surface modification of Ti and TiC coatings on magnesium alloy, Phys. Met. Metall., 115(2014), No. 13, p. 1389.
      [2]
      H. Hu, A. Yu, N. Li, and J.E. Allison, Potential magnesium alloys for high temperature die cast automotive applications:A review, Mater. Manuf. Processes, 18(2003), No. 5, p. 687.
      [3]
      B.L. Mordike and T. Ebret, Magnesium:Properties-applications-potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.
      [4]
      M.K. Kulekci, Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol., 39(2008), No. 9-10, p. 851.
      [5]
      A.A. Luo, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Rev., 49(2004), No. 1, p. 13.
      [6]
      P.J. Li, B. Tang, and E.G. Kandalova, Microstructure and properties of AZ91D alloy with Ca additions, Mater. Lett., 59(2005), No. 6, p. 671.
      [7]
      Y.M. Zhu, A.J. Morton, and J.F. Nie, Characterisation of intermetallic phases in an Mg-Y-Ag-Zn casting alloy, Philos. Mag. Lett., 90(2010), No. 3, p. 173.
      [8]
      L.Q. Wu, T.L. Zhang, C.L. Cui, R.Z. Wu, M.L. Zhang, and L.G. Hou, Influence of Nd and Y on texture of as-extruded Mg-5Li-3Al-2Zn alloy, Phys. Met. Metall., 117(2016), No. 7, p. 735.
      [9]
      S. Xue, Y.S. Sun, S.S. Ding, Q. Bai Q, and J. Bai, Effects of calcium additions on microstructure and creep behaviour of AE42 alloy, Mater. Sci. Technol., 21(2008), No. 7, p. 847.
      [10]
      Y. Yi, Y.G. Fan, and Y.J. Tang, Effect of lanthanum-praseodymium-cerium mischmetal on mechanical properties and microstructure of Mg-A1 alloys, J. Wuhan Univ. Technol., 26(2011), No. 1, p. 102.
      [11]
      L. Gao, R.S. Chena, and E.H. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, J. Alloys Compd., 481(2009), No. 1-2, p. 379.
      [12]
      A. Boby, K.K. Ravi Kumar, U.T.S. Pillai, and B.C. Pai, Effect of antimony and yttrium addition on the high temperature properties of AZ91 magnesium alloy, Procedia Eng., 55(2013), p. 98.
      [13]
      L.K. Singh, A. Srinivasan, U.T.S. Pillai, M.A. Joseph, and B.C. Pai, The effect of yttrium addition on the microstructure and mechanical properties of Mg alloys, Trans. Indian Inst. Met., 68(2015), No. 3, p. 331.
      [14]
      A. Elsayed, D. Sediako, and C. Ravindran, Solidification behavior of Mg-Zn and Mg-Zn-Zr alloys using in-situ neutron diffraction, J. Mater. Eng. Perform., 24(2015), No. 6, p. 2250.
      [15]
      A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. StJohn, Development of the as-cast microstructure in magnesium-aluminium alloys, J. Light Met., 1(2001), No. 1, p. 61.
      [16]
      M.S. Dargusch, K. Pettersen, K. Nogita, M.D. Nave, and G.L. Dunlop, The effect of aluminium content on the mechanical properties and microstructure of die cast binary magnesium-aluminium alloys, Mater. Trans., 47(2006), No. 4, p. 977.
      [17]
      X.D. Wang, W.B. Du, K. Liu, Z.H. Wang, and S.B. Li, Microstructure, tensile properties and creep behaviors of as-cast Mg-2Al-1Zn-xGd (x=1, 2, 3, and 4 wt.%) alloys, J. Alloys Compd., 522(2012), p. 78.
      [18]
      Y. Xiang, J. Liang, H.X. Liu, and X.L. Zhang, Effect of rare earth element Gd on the mechanical properties of AZ91 alloy,[in] The 3rd International Conference on Material, Mechanical and Manufacturing Engineering, Guangzhou, 2015, p. 17.
      [19]
      L.L. Rokhlin, T.V. Dobatkina, and N.I. Nikitina, Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups, Mater. Sci. Forum, 419(2003), p. 291.
      [20]
      Y.C. Lee, A.K. Dahle, and D.H. StJohn, The role of solute in grain refinement of magnesium, Metall. Mater. Trans. A, 3(2000), No. 11, p. 2895.
      [21]
      S. De Negri, A. Saccone, G. Cacciamani, and R. Ferro, The Al-R-Mg (R=Gd, Dy, Ho) systems. Part I:experimental investigation, Intermetallics, 11(2003), No. 11-12, p. 1125.
      [22]
      M. Sumida, S.H. Jung, and T. Okane, Microstructure, solute partitioning and material properties of gadolinium-doped magnesium alloy AZ91D, J. Alloys Compd., 475(2009), No. 1-2, p. 903.
      [23]
      G.H. Xiao, N.R. Tao, and K. Lu, Effect of strain, strain rate and on deformation twinning in a Cu-Zn alloy, Scripta Mater., 59(2008), No. 9, p. 975.
      [24]
      W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, and B.S. You, Strengthening mechanisms of indirect-extruded Mg-Sn based alloys at room temperature, J. Magnesium Alloys, 2(2014), No. 4, p. 299.
      [25]
      L. Alexander and H.P. Klug, Determination of crystallite size with the X-ray spectrometer, J. Appl. Phys., 21(1950), No. 2, p. 137.
      [26]
      C.H. Cáceres, C.J. Davidson, J.R. Griffiths, and C.L. Newton, Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy, Mater. Sci. Eng. A, 325(2002), No. 1, p. 344.
      [27]
      G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, 1986.
      [28]
      R. Hultgren and D.W. Mitchell, Grain refinement of magnesium alloys without superheating, Trans. AIME, 161(1945), p. 323.
      [29]
      R.L. Fleisgher, Solution hardening, Acta Metall., 9(1961), No. 11, p. 996.
      [30]
      R. Labusch, A statistical theory of solid solution hardening, Phys. Status Solidi B, 41(1970), No. 2, p. 659.
      [31]
      X.T. Guo, P.J. Li, and D.B. Zeng, Electron theory research in Mg-Y alloy, J. Chin. Rare Earth Soc., 21(2003), No. 6, p. 672.
      [32]
      A.J. Ardell, Precipitation hardening, Metall. Mater. Trans. A, 16(1985), No. 12, p. 2131.
      [33]
      J.L. Wang, N. Shi, L.D. Wang, Z.Y. Cao, L.M. Wang, and J.P. Li, Effect of zinc and mischmetal on microstructure and mechanical properties of Mg-Al-Mn alloy, J. Rare Earths, 28(2010), No. 5, p. 794.

    Catalog


    • /

      返回文章
      返回