Liang Zhao, and Qun-hu Xue, Effects of temperature-gradient-induced damage of zirconia metering nozzles, Int. J. Miner. Metall. Mater., 24(2017), No. 9, pp.999-1003. https://dx.doi.org/10.1007/s12613-017-1488-0 |
A. Loganathan and A.S. Gandhi, Effect of phase transformations on the fracture toughness of t'yttria stabilized zirconia, Mater. Sci. Eng. A, 556(2012), p. 927. |
R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83(2000), No. 3, p. 461. |
J. Chevalier, L. Gremillard, A.V. Virkar, and D.R. Clarke, The tetragonal-monoclinic transformation in zirconia:lessons learned and future trends, J. Am. Ceram. Soc., 92(2009), No. 9, p. 1901. |
S.L. Li, C.Y. Zhou, Z.Q. Li, and R.Z. Huang, Development of high strength composite metering nozzle for continuous casting, J. Ceram., 23(2002), No. 2, p. 139. |
X.H. Wang, H.X. Li, and B. Yang, Review on development of tundish nozzle for billet continuous casting, Continuous Cast., 2003, No. 3, p. 37. |
E. Volceanov, A. Abagiu, and M. Becherescu, A. Volceanov, P. Nită, R.Truşcă, and F. Mihalache, Development of zirconia composite ceramics and study on their corrosion resistance up to 1600℃, Key Eng. Mater., 264-268(2004), No. 12, p. 1739. |
Y. Hemberger, C. Berthold, and K.G. Nickel, Wetting and corrosion of yttria stabilized zirconia by molten slags, J. Eur. Ceram. Soc., 32(2012), No. 11, p. 2859. |
A.H. Bui, S.C. Park, I.S. Chung, and H.G. Lee, Dissolution behavior of zirconia-refractories during continuous casting of steel, Met. Mater. Int., 12(2006), No. 5, p. 435. |
K. Wiśniewska, D. Madej, and J. Szczerba, Corrosion of the refractory zirconia metering nozzle due to molten steel and slag, Mater. Technol., 50(2016), No. 2, p. 29. |
H. Zhang, Influence of the Different Ratio of the Al2O3/ZrO2 Composite Powder on Properties of Zirconia Metering Nozzle[Dissertation], Xi'an University of Architecture and Technology, Xi'an, 2014, p. 41. |
K.W. Schlichting, N.P. Padture, and P.G. Klemens, Thermal conductivity of dense and porous yttria-stabilized zirconia, J. Mater. Sci., 36(2001), No. 12, p. 3003. |
X. Wang, Analysis on the Mineral Composition of the Zirconia Metering Nozzle in Service Temperatures[Dissertation], Xi'an University of Architecture and Technology, Xi'an, 2016, p. 30. |
J.X. Zhao, Y.J. Zhang, H.Y. Gong, Y.B. Zhang, X.L. Wang, X. Guo, and Y.J. Zhao, Fabrication of high-performance Y2O3 stabilized hafnium dioxide refractories, Ceram. Int., 41(2015), No. 4, p. 5232. |
L. Zhao, Q.H. Xue, and D.H. Ding, Effects of composite stabilizers on phase composition and mechanical properties of ZrO2 metering nozzle, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1041. |
A. Quadling, L. Vandeperre, M. Parkes, and W.E. Lee, Second phase-induced degradation of fused MgO partially stabilized zirconia aggregates, J. Am. Ceram. Soc., 98(2015), No. 4, p. 1364. |
Chenhong Ma, Yong Li, Peng Jiang, et al. Corrosion mechanism of postmortem converters slag-blocking ZrO2 sliding gate. Journal of the European Ceramic Society, 2024.
![]() | |
Rongrong Chu, Thanh Tuan Nguyen, Hewei Song, et al. Crystal transformation engineering for effective polysulfides blocking layer for excellent energy density lithium–sulfur batteries. Energy Storage Materials, 2023, 61: 102877.
![]() | |
Liang Zhao, Shuang Yao, Yong Qiang Li, et al. Effects of Calcium Oxide and Magnesium Oxide Stabilizing Agents on the Critical Transformation Size of Tetragonal Zirconia. Materials Science Forum, 2020, 980: 15.
![]() |