留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 9
Sep.  2017
数据统计

分享

计量
  • 文章访问数:  482
  • HTML全文浏览量:  82
  • PDF下载量:  10
  • 被引次数: 0
Lin Liu, Xin-da Wang, Xiang Li, Xiao-tong Qi,  and Xuan-hui Qu, Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding, Int. J. Miner. Metall. Mater., 24(2017), No. 9, pp. 1021-1026. https://doi.org/10.1007/s12613-017-1491-5
Cite this article as:
Lin Liu, Xin-da Wang, Xiang Li, Xiao-tong Qi,  and Xuan-hui Qu, Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding, Int. J. Miner. Metall. Mater., 24(2017), No. 9, pp. 1021-1026. https://doi.org/10.1007/s12613-017-1491-5
引用本文 PDF XML SpringerLink
研究论文

Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

  • 通讯作者:

    Lin Liu    E-mail: liulin@cumtb.edu.cn

  • The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a φ500 μm micro post and a φ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the φ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.
  • Research Article

    Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

    + Author Affiliations
    • The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a φ500 μm micro post and a φ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the φ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.
    • loading
    • [1]
      D.W. Deng, R. Chen, Q. Sun, and X.N. Li, Microstructural study of 17-4PH stainless steel after plasma-transferred arc welding, Material, 8(2015), No. 2, p. 424.
      [2]
      H.Z. Ye, X.Y. Liu, and H.P. Hong, Sintering of 17-4PH stainless steel feedstock for metal injection molding, Mater. Lett., 62(2008), No. 19, p. 3334.
      [3]
      L. Liu, N.H. Loh, B.Y. Tay, and S.B.Tor, Microstructure evolution of 316L stainless steel micro components prepared by micro powder injection molding, Powder Technol., 206(2011), No. 3, p. 246.
      [4]
      M.J Sulaiman, N. Johari, M.A. Ahmad, R.B. Ibrahim, A.R.A. Talib, and M.Y. Harmin, Solvent debinding of inconel 718 fabricated via metal injection molding, Adv. Mater. Res., 1133(2016), p. 275.
      [5]
      P. Imgrund, A. Rota, and A. Simchi, Micro injection molding of 316L/17-4PH and 316L/Fe powders for fabrication of magnetic-nonmagnetic bimetals, J. Mater. Process. Technol., 200(2008), No. 1-3, p. 259.
      [6]
      Y. Shengjie, Y.C. Lam, and J.C. Chai, Evolution of liquid-bond strength in powder injection molding compact during thermal debinding:numerical simulation, Modell. Simul. Mater. Sci. Eng., 12(2004), No. 4, p. 311.
      [7]
      L. Gorjan, A. Dakskobler, and T. Kosmač, Partial wick-debinding of low-pressure powder injection-molded ceramic parts, J. Eur. Ceram. Soc., 30(2010), No. 15, p. 3013.
      [8]
      I.M. Somasundram, A. Cendrowicz, and M.L. Johns, 2-D simulation of wick debinding for ceramic parts in close proximity, Chem. Eng. Sci., 65(2010), No. 22, p. 5990.
      [9]
      F.A. Çetinel, W. Bauer, R. Knitter, and J. Haußelt, Factors affecting strength and shape retention of zirconia micro bending bars during thermal debinding, Ceram. Int., 37(2011), No. 7, p. 2809.
      [10]
      K. Sharmin and I. Schoegl, Two-step debinding and co-extrusion of ceramic-filled PEBA and EVA blends, Ceram. Int., 40(2014), No. 9, p. 14871.
      [11]
      S.B. Guo, A.M. Chu, H.J. Wu, C.B. Cai, and X.H. Qu, Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti-24Nb-4Zr-7.9Sn alloy for biomedical applications, J. Alloys Compd., 597(2014), No. 6, p. 211.
      [12]
      C. Ren, Z.Z. Fang, H. Zhang, and M. Koopman, The study on low temperature sintering of nano-tungsten powders, Int. J. Refract. Met. Hard Mater., 61(2016), No. 6, p. 273.
      [13]
      A. Simchi, A. Rota, and P. Imgrund, An investigation on the sintering behavior of 316L and 17-4PH stainless steel powders for graded composites, Mater. Sci. Eng. A, 424(2006), No. 1-2, p. 282.
      [14]
      Y.X. Wu, R.M. German, D. Blaine, B. Marx, and C. Schlaefer, Effects of residual carbon content on sintering shrinkage, microstructure and mechanical properties of injection molded 17-4 PH stainless steel, J. Mater. Sci., 37(2002), No. 17, p. 3573.
      [15]
      H.J. Sung, T.K. Ha, S. Ahn, and Y.W. Chang, Powder injection molding of a 17-4 PH stainless steel and the effect of sintering temperature on its microstructure and mechanical properties, J. Mater. Process. Technol., 130-131(2002), No. 2, p. 321.

    Catalog


    • /

      返回文章
      返回