留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 10
Oct.  2017
数据统计

分享

计量
  • 文章访问数:  384
  • HTML全文浏览量:  36
  • PDF下载量:  13
  • 被引次数: 0
Shuang-yu Cai, Lei Wen, and Ying Jin, A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 24(2017), No. 10, pp. 1112-1124. https://doi.org/10.1007/s12613-017-1502-6
Cite this article as:
Shuang-yu Cai, Lei Wen, and Ying Jin, A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 24(2017), No. 10, pp. 1112-1124. https://doi.org/10.1007/s12613-017-1502-6
引用本文 PDF XML SpringerLink
研究论文Open Access

A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution

  • 通讯作者:

    Ying Jin    E-mail: yjin@ustb.edu.cn

  • Corrosion kinetic parameters play an important role in researchers' ability to understand and predict corrosion behavior. The corrosion kinetic parameters of structural steel Q345B specimens immersed in 3.5wt% NaCl solution for 1-2 h were determined using linear polarization resistance (LPR), Tafel-curve multiparameter fitting, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) methods. The advantages and disadvantages of each method were investigated and discussed through comparative investigation. Meanwhile, the average corrosion rate was examined using traditional coupon tests. The results showed that the corrosion current density values estimated by EFM at a base frequency of 0.001 Hz and those obtained by Tafel-curve four-parameter fitting (TC4) are similar and consistent with the results of coupon tests. Because of their slight perturbation of the corrosion system, EIS and EFM/TC4 in collaborative application are the recommended techniques for determining the kinetics and the corresponding parameters for the homogeneous corrosion of the naked metal. In our study of the electrochemical kinetics, we obtained much more abundant and accurate electrochemical kinetic parameters through the combined use of different electrochemical methods.
  • Research ArticleOpen Access

    A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution

    + Author Affiliations
    • Corrosion kinetic parameters play an important role in researchers' ability to understand and predict corrosion behavior. The corrosion kinetic parameters of structural steel Q345B specimens immersed in 3.5wt% NaCl solution for 1-2 h were determined using linear polarization resistance (LPR), Tafel-curve multiparameter fitting, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) methods. The advantages and disadvantages of each method were investigated and discussed through comparative investigation. Meanwhile, the average corrosion rate was examined using traditional coupon tests. The results showed that the corrosion current density values estimated by EFM at a base frequency of 0.001 Hz and those obtained by Tafel-curve four-parameter fitting (TC4) are similar and consistent with the results of coupon tests. Because of their slight perturbation of the corrosion system, EIS and EFM/TC4 in collaborative application are the recommended techniques for determining the kinetics and the corresponding parameters for the homogeneous corrosion of the naked metal. In our study of the electrochemical kinetics, we obtained much more abundant and accurate electrochemical kinetic parameters through the combined use of different electrochemical methods.
    • loading
    • [1]
      G.S. Frankel, Electrochemical techniques in corrosion:status, limitations, and needs, J. ASTM Int., 5(2008), No. 2, p. 1.
      [2]
      G.L. Edgemon, Electrochemical noise based corrosion monitoring at the Hanford site:third generation system development, design, and data,[in] Corrosion 2001, NACE International, Houston, 2001, art. No. NACE-01282.
      [3]
      B. Kursten, F. Druyts, L. Areias, Y. van Ingelgem, D. De Wilde, G. Nieubourg, G.S. Duffó, and C. Bataillon, Preliminary results of corrosion monitoring studies of carbon steel overpack exposed to supercontainer concrete buffer, Corros. Eng. Sci. Technol., 49(2014), No. 6, p. 485.
      [4]
      S. Girija and U. Kamachi Mudali, Electrochemical noise resistance evaluation of 304L SS in nitric acid and simulated nuclear high level waste, Corros. Eng. Sci. Technol., 49(2014), No. 5, p. 335.
      [5]
      M. Barbalat, D. Caron, L. Lanarde, M. Meyer, S. Fontaine, F. Castillon, J. Vittonato, and P. Refait, Estimation of residual corrosion rates of steel under cathodic protection in soils via voltammetry, Corros. Sci., 73(2013), p. 222.
      [6]
      M. Barbalat, L. Lanarde, D. Caron, M. Meyer, J. Vittonato, F. Castillon, S. Fontaine, and P. Refait, Electrochemical study of the corrosion rate of carbon steel in soil:Evolution with time and determination of residual corrosion rates under cathodic protection, Corros. Sci., 55(2012), p. 246.
      [7]
      F.J. Ansuini and J.R. Dimond, Field tests on an advanced cathodic protection coupon,[in] Corrosion 2005, NACE International, Houston, 2005, art. No. NACE-05039.
      [8]
      S.Y. Li, Y.G. Kim, S. Jung, H.S. Song, and S.M. Lee, Application of steel thin film electrical resistance sensor for in situ corrosion monitoring, Sens. Actuators B, 120(2007), No. 2, p. 368.
      [9]
      F. Varela, M.Y.J. Tan, and M. Forsyth, An overview of major methods for inspecting and monitoring external corrosion of on-shore transportation pipelines, Corros. Eng. Sci. Technol., 50(2015), No. 3, p. 226.
      [10]
      P.R. Roberge, M.A.A. Tullmin, L. Grenier, and C. Ringas, Corrosion surveillance for aircraft, Mater. Perform., 35(1996), No. 12, p. 50.
      [11]
      F. Pruckner, J. Theiner, J. Eri, and G.E. Nauer, In-situ monitoring of the efficiency of the cathodic protection of reinforced concrete by electrochemical impedance spectroscopy, Electrochim. Acta, 41(1996), No. 7-8, p. 1233.
      [12]
      A. Del Valle-Moreno, J. Genescá-Llongueras, A.A. Torres-Acosta, and M. Martínez, EIS monitoring of cathodic protection of steel reinforced concrete enhanced by humectants, ECS Trans., 20(2009), No. 1, p. 489.
      [13]
      C. Andrade, J. Sanchez, J. Fullea, N. Rebolledo, and F. Tavares, On-site corrosion rate measurements:3D simulation and representative values, Mater. Corros., 63(2012), No. 12, p. 1154.
      [14]
      V. Saraswathy and S.P. Karthick, Effect of ecofriendly sealing coat against corrosion protection of steel rebars in concrete, Corros. Eng. Sci. Technol., 49(2014), No. 5, p. 327.
      [15]
      M. Wasim and R.R. Hussain, Comparative study on induced macrocell corrosion phenomenon in repaired ordinary reinforced and self-compacting concrete structures, Corros. Eng. Sci. Technol., 48(2013), No. 5, p. 370.
      [16]
      T. Prosek, N. Le Bozec, and D. Thierry, Application of automated corrosion sensors for monitoring the rate of corrosion during accelerated corrosion tests, Mater. Corros., 65(2014), No. 5, p. 448.
      [17]
      M. Kouril, T. Prosek, B. Scheffel, and F. Dubois, High sensitivity electrical resistance sensors for indoor corrosion monitoring, Corros. Eng. Sci. Technol., 48(2013), No. 4, p. 282.
      [18]
      A. Dravnieks and H.A. Cataldi, Industrial applications of a method for measuring small amounts of corrosion without removal of corrosion products, Corrosion, 10(1954), No. 7, p. 224.
      [19]
      A.J. Freedman, E.S. Troscinski, and A. Dravnieks, An electrical resistance method of corrosion monitoring in refinery equipment, Corrosion, 14(1958), No. 4, p. 29.
      [20]
      L.T. Yang, Techniques for Corrosion Monitoring, Woodhead Publishing Ltd., Cambridge, 2008, p. 277.
      [21]
      D. Thierry, A. Taher, and C. Leygraf, Corrosion monitoring techniques applied to cooling water and district heating systems,[in] Corrosion 87, NACE International, 1987, art. No. NACE-87463.
      [22]
      K.B. Oldham and F. Mansfeld, Corrosion rates from polarization curves:A new method, Corros. Sci., 13(1973), No. 10, p. 813.
      [23]
      F. Mansfeld, Simultaneous determination of instantaneous corrosion rates and Tafel slopes from polarization resistance measurements, J. Electrochem. Soc., 120(1973), No. 4, p. 515.
      [24]
      F. Mansfeld, Tafel slopes and corrosion rates from polarization resistance measurements, Corrosion, 29(1973), No. 10, p. 397.
      [25]
      F. Mansfeld and M. Kendig, Technical note:concerning the choice of scan rate in polarization measurements, Corrosion, 37(1981), No. 9, p. 545.
      [26]
      C.N. Cao, Estimation of electrochemical kinetic parameters of corrosion processes by weak polarization curve fitting, J. Chin. Soc. Corros. Prot., 5(1985), No. 3, p. 155.
      [27]
      Y.T. Zhao and X.P. Guo, Determination of electrochemical kinetic parameters in a mixture controlled corrosion system, Acta Phys. Chim. Sinica, 22(2006), No. 10, p. 1281.
      [28]
      Y. Sun, J.E. Remias, J.K. Neathery, and K. Liu, Electrochemical study of corrosion behaviour of carbon steel A106 and stainless steel 304 in aqueous monoethanolamine, Corros. Eng. Sci. Technol., 46(2011), No. 6, p. 724.
      [29]
      G.B. Chen, H.Y. Yang, and H.J. Li, In situ characterization of natural pyrite bioleaching using electrochemical noise technique, Int. J. Miner. Metall. Mater., 23(2016), No. 2, p. 117.
      [30]
      Y.L. Huang, H. Shih, H.C. Huang, J. Daugherty, S. Wu, S. Ramanathan, C. Chang, and F. Mansfeld, Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS), Corros. Sci., 50(2008), No. 12, p. 3569.
      [31]
      D. Mareci, I. Rusu, R. Chelariu, G. Bolat, C. Munteanu, D. Sutiman, and R.M. Souto, Application of dynamic electrochemical impedance spectroscopy to the evaluation of the corrosion resistance of a historic bronze object in artificial acid rainwater, Eur. J. Sci. Technol., 9(2013), No. 6, p. 189.
      [32]
      L.N. Xu, J.Y. Zhu, M.X. Lu, L. Zhang, and W. Chang, Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments, Int. J. Miner. Metall. Mater., 22(2015), No. 5, p. 500.
      [33]
      O. Schneider and R.G. Kelly, Localised coating failure of epoxy coated aluminium alloy 2024-T3 in 0.5 M NaCl solutions:comparison of conventional electrochemical techniques and microelectrochemical methods, Corros. Eng. Sci. Technol., 38(2003), No. 2, p. 119.
      [34]
      S. Sathiyanarayanan and K. Balakrishnan, Critique of harmonic analysis for corrosion rate measurements, Br. Corros. J., 29(1994), No. 2, p. 152.
      [35]
      K. Darowicki and J. Majewska, Harmonic analysis of electrochemical and corrosion systems-a review, Corros. Rev., 17(1999), No. 5-6, p. 383.
      [36]
      J. Jankowski, Harmonic synthesis:A novel electrochemical method for corrosion rate monitoring, J. Electrochem. Soc., 150(2003), No. 4, p. B181.
      [37]
      C. Andrade and C. Alonso, Corrosion rate monitoring in the laboratory and on-site, Constr. Build. Mater., 10(1996), No. 5, p. 315.
      [38]
      Y. Zou, J. Wang, and Y.Y. Zheng, Electrochemical techniques for determining corrosion rate of rusted steel in seawater, Corros. Sci., 53(2011), No. 1, p. 208.
      [39]
      M. Stern and A.L. Geary, Electrochemical polarization I. A theoretical analysis of the shape of polarization curves, J. Electrochem. Soc., 104(1957), No. 1, p. 56.
      [40]
      D. Li, Electrochemistry Theory, Beihang University Press, Beijing, 1999, p. 308.
      [41]
      R.W. Bosch, J. Hubrecht, W.F. Bogaerts, and B.C. Syrett, Electrochemical frequency modulation:A new electrochemical technique for online corrosion monitoring, Corrosion, 57(2001), No. 1, p. 60.
      [42]
      E. Kuş and F. Mansfeld, An evaluation of the electrochemical frequency modulation (EFM) technique, Corros. Sci., 48(2006), No. 4, p. 965.
      [43]
      L. Han and S.Z. Song, Using electrochemical frequency modulation technique to detect corrosion of carbon steel in seawater, J. Chem. Ind. Eng., 59(2008), No. 4, p. 977.
      [44]
      J.A. González, A. Molina, M.L. Escudero, and C. Andrade, Errors in the electrochemical evaluation of very small corrosion rates-I. Polarization resistance method applied to corrosion of steel in concrete, Corros. Sci., 25(1985), No. 10, p. 917.
      [45]
      J.A. González, A. Molina, M.L. Escudero, and C. Andrade, Errors in the electrochemical evaluation of very small corrosion rates-Ⅱ. Other electrochemical techniques applied to corrosion of steel in concrete, Corros. Sci., 25(1985), No. 7, p. 519.
      [46]
      R.E. Melchers and R. Jeffrey, Early corrosion of mild steel in seawater, Corros. Sci., 47(2005), No. 7, p. 1678.
      [47]
      B.M. Wei, Metal Corrosion Theory and Application, Chemical Industry Press, Beijing, 1984, p. 96.
      [48]
      Y.S. Wu, The Research Methods of Metal Corrosion, Metallurgical Industry Press, Beijing, 1993, p. 71.
      [49]
      S.L. Gojković, S.K. Zečević, M.D. Obradović, and D.M. DražIć, Oxygen reduction on a duplex stainless steel, Corros. Sci., 40(1998), No. 6, p. 849.
      [50]
      N. Le Bozec, C. Compère, M. L'Her, A. Laouenan, D. Costa, and P. Marcus, Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater, Corros. Sci., 43(2001), No. 4, p. 765.
      [51]
      A. Davydov, K.V. Rybalka, L.A. Beketaeva, G.R. Engelhardt, P. Jayaweera, and D.D. Macdonald, The kinetics of hydrogen evolution and oxygen reduction on Alloy 22, Corros. Sci., 47(2005), No. 1, p. 195.

    Catalog


    • /

      返回文章
      返回