留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 11
Nov.  2017
数据统计

分享

计量
  • 文章访问数:  571
  • HTML全文浏览量:  91
  • PDF下载量:  8
  • 被引次数: 0
Mohammad Baghani and Mahmood Aliofkhazraei, CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties, Int. J. Miner. Metall. Mater., 24(2017), No. 11, pp. 1321-1334. https://doi.org/10.1007/s12613-017-1524-0
Cite this article as:
Mohammad Baghani and Mahmood Aliofkhazraei, CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties, Int. J. Miner. Metall. Mater., 24(2017), No. 11, pp. 1321-1334. https://doi.org/10.1007/s12613-017-1524-0
引用本文 PDF XML SpringerLink
研究论文

CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties

  • 通讯作者:

    Mahmood Aliofkhazraei    E-mail: maliofkh@gmail.com,khazraei@modares.ac.ir

  • The effect of alumina nanoparticle addition on the microstructure and tribological properties of a CuCrW alloy was investigated in this work. Mechanical alloying was carried out in a satellite ball mill. The tribological properties of the samples were evaluated using pin-on-disk wear tests with different pins (alumina, tungsten carbide, and steel pins). The results indicated that the tungsten carbide pin had a lower coefficient of friction than the alumina and steel pins because of its high hardness and low surface roughness. In addition, when the sliding rate was decreased, the weight-loss rate increased. The existence of alumina nanoparticles in the nanocomposite led to a lower weight-loss rate and to a change in the wear mechanism from adhesive to abrasive.
  • Research Article

    CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties

    + Author Affiliations
    • The effect of alumina nanoparticle addition on the microstructure and tribological properties of a CuCrW alloy was investigated in this work. Mechanical alloying was carried out in a satellite ball mill. The tribological properties of the samples were evaluated using pin-on-disk wear tests with different pins (alumina, tungsten carbide, and steel pins). The results indicated that the tungsten carbide pin had a lower coefficient of friction than the alumina and steel pins because of its high hardness and low surface roughness. In addition, when the sliding rate was decreased, the weight-loss rate increased. The existence of alumina nanoparticles in the nanocomposite led to a lower weight-loss rate and to a change in the wear mechanism from adhesive to abrasive.
    • loading
    • [1]
      J.R. Davis, Copper and Copper Alloys, ASM International, Ohio, 2001, p. 246.
      [2]
      E. Ma, Alloys created between immiscible elements, Prog. Mater. Sci., 50(2005), No. 4, p. 413.
      [3]
      C.Y. Zhang, Z.M. Yang, Y.P. Wang, B.J. Ding, and Y. Guo, Preparation of CuCr25 contact materials by vacuum induction melting, J. Mater. Process. Technol., 178(2006), No. 1-3, p. 283.
      [4]
      M. Bizjak, B. Karpe, G. Jakša, and J. Kovač, Surface precipitation of chromium in rapidly solidified Cu-Cr alloys, Appl. Surf. Sci., 277(2013), p. 83.
      [5]
      J. Gao, Y.P. Wang, Z.M. Zhou, and M. Kolbe, Phase separation in undercooled Cu-Cr melts, Mater. Sci. Eng. A, 449-451(2007), p. 654.
      [6]
      Q. Zhao, Z.B. Shao, C.J. Liu, M.F. Jiang, X.T. Li, R. Zevenhoven, and H. Saxén, Preparation of Cu-Cr alloy powder by mechanical alloying, J. Alloys Compd., 607(2014), p. 118.
      [7]
      Q. Fang and Z.X. Kang, An investigation on morphology and structure of Cu-Cr alloy powders prepared by mechanical milling and alloying, Powder Technol., 270(2015), p. 104.
      [8]
      C. Aguilar, D. Guzmán, F. Castro, V. Martínez, F. de las Cuevas, S. Lascano, and T. Muthiah, Fabrication of nanocrystalline alloys Cu-Cr-Mo super satured solid solution by mechanical alloying, Mater. Chem. Phys., 146(2014), No. 3, p. 493.
      [9]
      S. Sheibani, S. Heshmati-Manesh, and A. Ataie, Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying, Acta Mater., 58(2010), No. 20, p. 6828.
      [10]
      X.H. Yang, Z.K. Fan, S.H. Liang, and P. Xiao, Effects of TiC on microstructures and properties of CuW electrical contact materials, Rare Met. Mater. Eng., 36(2007), No. 5, p. 817.
      [11]
      X. Yang, Z. Fan, S. Liang, and P. Xiao, Effects of Y2O3 on properties of Cu-W electrical contact materials, Chin. J. Mater. Res., 21(2007), No. 4, p. 414.
      [12]
      P. Bacal, P. Indyka, Z. Stojek, and M. Donten, Unusual example of induced codeposition of tungsten. Galvanic formation of Cu-W alloy, Electrochem. Commun., 54(2015), p. 28.
      [13]
      T. Raghu, R. Sundaresan, P. Ramakrishnan, and T.R. Rama Mohan, Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying, Mater. Sci. Eng. A, 304-306(2001), p. 438.
      [14]
      L. Xu, M. Yan, Y. Xia, J.H. Peng, W. Li, L.B. Zhang, C.H. Liu, G. Chen, and Y. Li, Influence of copper content on the property of Cu-W alloy prepared by microwave vacuum infiltration sintering, J. Alloys Compd., 592(2014), p. 202.
      [15]
      D.Y. Ying and D.L. Zhang, Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A, 286(2000), No. 1, p. 152.
      [16]
      L.S. Raju and A. Kumar, A novel approach for fabrication of Cu-Al2O3 surface composites by friction stir processing, Procedia Mater. Sci., 5(2014), p. 434.
      [17]
      W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, Florida, 2014, p. 251.
      [18]
      B.D. Cullity, Elements of X-ray Diffraction, 2nd Ed., Adisson-Wesley Publishing, Boston, 1978, p. 368.
      [19]
      H.P. Klung and L.E. Alexander, X-ray Diffraction Procedures, Willey, New York, 1962, p. 491.
      [20]
      J. Eckert, J.C. Holzer, C.E. Krill, and W.L. Johnson, Reversible grain size changes in ball-milled nanocrystalline Fe-Cu alloys, J. Mater. Res., 7(1992), No. 8, p. 1980.
      [21]
      N.K. Mukhopadhyay, D. Mukherjee, S. Bera, I. Manna, and R. Manna, Synthesis and characterization of nano-structured Cu-Zn γ-brass alloy, Mater. Sci. Eng. A, 485(2008), No. 1-2, p. 673.
      [22]
      L. Lü and M.O. Lai, Mechanical Alloying, Springer Science & Business Media, Berlin, 2013, p. 346.
      [23]
      R. Ritasalo, X.W. Liua, O. Söderberg, A. Keski-Honkola, V. Pitkänen, and S.P. Hannula, The microstructural effects on the mechanical and thermal properties of pulsed electric current sintered Cu-Al2O3 composites, Procedia Eng., 10(2011), p. 124.
      [24]
      D.G. Cho, S.K. Yang, J.C. Yun, H.S. Kim, J.S. Lee, and C.S. Lee, Effect of sintering profile on densification of nano-sized Ni/Al2O3 composite, Composites Part B, 45(2013), No. 1, p. 159.
      [25]
      P.J.F. Harris, Growth and structure of supported metal catalyst particles, Int. Mater. Rev., 40(1995), No. 3, p. 97.
      [26]
      R.M. German, Sintering Theory and Practice, Wiley-VCH, New York, 1996, p. 568.
      [27]
      R.M. German, Powder Metallurgy and Particulate Materials Processing:the Processes, Materials, Products, Properties, and Applications, Metal Powder Industries Federation, Princeton, 2005, p. 122.
      [28]
      M. Korać, Ž. Kamberović, Z. Anđić, M. Filipović, and M. Tasić, Sintered materials based on copper and alumina powders synthesized by a novel method, Sci. Sinter., 42(2010), No. 1, p. 81.
      [29]
      S.H. Ryu, J.H. Park, C.S. Lee, J.C. Lee, S.H. Ahn, and S.T. Oh, Experimental measurement of coefficient of thermal expansion for graded layers in Ni-Al2O3 FGM joints for accurate residual stress analysis, Mater. Trans., 50(2009), No. 6, p. 1553.
      [30]
      Z. Hussain and H.K. Koay, Studies on alumina dispersion-strengthened copper composites through ball milling and mechanical alloying method, J. Teknologi A, 43(2005), p. 1.
      [31]
      D.G. Kim, G.S. Kim, S.T. Oh, and Y.D. Kim, The initial stage of sintering for the W-Cu nanocomposite powder prepared from W-CuO mixture, Mater. Lett., 58(2004), No. 5, p. 578.
      [32]
      G. Di Girolamo, A. Brentari, C. Blasi, and E. Serra, Microstructure and mechanical properties of plasma sprayed alumina-based coatings, Ceram. Int., 40(2014), No. 8, p. 12861.
      [33]
      S. Alirezaei, S.M. Monirvaghefi, M. Salehi, and A. Saatchi, Effect of alumina content on surface morphology and hardness of Ni-P-Al2O3(α) electroless composite coatings, Surf. Coat. Technol., 184(2004), No. 2-3, p. 170.
      [34]
      Q.Y. Feng, T.J. Li, H.Y. Yue, K. Qi, F.D. Bai, and J.Z. Jin, Preparation and characterization of nickel nano-Al2O3 composite coatings by sediment co-deposition, Appl. Surf. Sci., 254(2008), No. 8, p. 2262.
      [35]
      H. Gül, F. Kiliç, S. Aslan, A. Alp, and H. Akbulut, Characteristics of electro-co-deposited Ni-Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings, Wear, 267(2009), No. 5-8, p. 976.
      [36]
      F. Shehata, M. Abdelhameed, A. Fathy, and M. Elmahdy, Preparation and characteristics of Cu-Al2O3 nanocomposite, Open J. Met., 1(2011), No. 2, p. 25.
      [37]
      G. Straffelini and A. Molinari, Effect of hardness on rolling-sliding damage mechanisms in PM alloys, Powder Metall., 44(2001), No. 4, p. 153.
      [38]
      H. Khorsand, S.M. Habibi, H. Yoozbashizadea, K. Janghorban, S.M.S. Reihani, H.R. Seraji, and M. Ashtari, The role of heat treatment on wear behavior of powder metallurgy low alloy steels, Mater. Des., 23(2002), No. 7, p. 667.
      [39]
      G. Straelini and A. Molinari, Dry sliding wear of ferrous PM materials, Powder Metall., 44(2001), No. 3, p. 248.
      [40]
      Z.F. Zhang, L.C. Zhang, and Y.W. Mai, Wear of ceramic particle-reinforced metal-matrix composites. Part Ⅱ A model of adhesive wear, J. Mater. Sci., 30(1995), No. 8, p. 1967.
      [41]
      R. Ritasalo, M. Antonov, R. Veinthal, and S.P. Hannula, Comparison of the wear and frictional properties of Cu matrix composites prepared by pulsed electric current sintering, Proc. Est. Acad. Sci., 63(2014), No. 1, p. 62.
      [42]
      M. Yasir, C. Zhang, W. Wang, P. Xu, and L. Liu, Wear behaviors of Fe-based amorphous composite coatings reinforced by Al2O3 particles in air and in NaCl solution, Mater. Des., 88(2015), p. 207.
      [43]
      B. Song, S.J. Dong, H.L. Liao, and C. Coddet, Microstructure and wear resistance of FeAl/Al2O3 intermetallic composite coating prepared by atmospheric plasma spraying, Surf. Coat. Technol., 268(2015), p. 24.
      [44]
      K.H. Hou and Y.C. Chen, Preparation and wear resistance of pulse electrodeposited Ni-W/Al2O3 composite coatings, Appl. Surf. Sci., 257(2011), No. 15, p. 6340.
      [45]
      M.A. El-Hadek and S. Kaytbay, Al2O3 particle size effect on reinforced copper alloys:an experimental study, Strain, 45(2009), No. 6, p. 506.
      [46]
      M. Knechtel, H. Prielipp, H. Müllejans, N. Claussen, and J. Rödel, Mechanical properties of Al/Al2O3 and Cu/Al2O3 composites with interpenetrating networks, Scripta Metall. Mater., 31(1994), No. 8, p. 1085.
      [47]
      A.A. Hamid, P.K. Ghosh, S.C. Jain, and S. Ray, The influence of porosity and particles content on dry sliding wear of cast in situ Al (Ti)-Al2O3(TiO2) composite, Wear, 265(2008), No. 1-2, p. 14.
      [48]
      S. Guicciardi, C. Melandri, F. Lucchini, and G. de Portu, On data dispersion in pin-on-disk wear tests, Wear, 252(2002), No. 11-12, p. 1001.
      [49]
      A.G. Tang, M.L. Wang, W. Huang, and X.L. Wang, Composition design of Ni-nano-Al2O3-PTFE coatings and their tribological characteristics, Surf. Coat. Technol., 282(2015), p. 121.
      [50]
      N.K. Shrestha, K. Sakurada, M. Masuko, and T. Saji, Composite coatings of nickel and ceramic particles prepared in two steps, Surf. Coat. Technol., 140(2001), No. 2, p. 175.
      [51]
      M. Farvizi, T. Ebadzadeh, M.R. Vaezi, H.S. Kim, and A. Simchi, Effect of nano Al2O3 addition on mechanical properties and wear behavior of NiTi intermetallic, Mater. Des., 51(2013), p. 375.
      [52]
      K. Rajkumar and S. Aravindan, Tribological performance of microwave sintered copper-TiC-graphite hybrid composites, Tribol. Int., 44(2011), No. 4, p. 347.
      [53]
      S.Z. Wen and P. Huang, Principles of Tribology, John Wiley & Sons, New Jersey, 2002, p. 172.
      [54]
      N. Govindarajan and R. Gnanamoorthy, Study of damage mechanisms and failure analysis of sintered and hardened steels under rolling-sliding contact conditions, Mater. Sci. Eng. A, 445-446(2007), p. 259.
      [55]
      Y. Gao, J.C. Jie, P.C. Zhang, J. Zhang, T.M. Wang, and T.J. Li, Wear behavior of high strength and high conductivity Cu alloys under dry sliding, Trans. Nonferrous Met. Soc. China, 25(2015), No. 7, p. 2293.
      [56]
      K. Kato, Classification of Wear Mechanisms/Models, John Wiley & Sons, New Jersey, 2005, p. 9.
      [57]
      B. Yao, Z. Han, Y.S. Li, N.R. Tao, and K. Lu, Dry sliding tribological properties of nanostructured copper subjected to dynamic plastic deformation, Wear, 271(2011), No. 9-10, p. 1609.
      [58]
      Z. Han, L. Lu, and K. Lu, Dry sliding tribological behavior of nanocrystalline and conventional polycrystalline copper, Tribol. Lett., 21(2006), No. 1, p. 45.
      [59]
      Y.S. Zhang, Z. Han, K. Wang, and K. Lu, Friction and wear behaviors of nanocrystalline surface layer of pure copper, Wear, 260(2006), No. 9-10, p. 942.
      [60]
      I. Apachitei and J. Duszczyk, Autocatalytic nickel coatings on aluminium with improved abrasive wear resistance, Surf. Coat. Technol., 132(2000), No. 1, p. 89.
      [61]
      B. Bozzini, M. Boniardi, A. Fanigliulo, and F. Bogani, Tribological properties of electroless Ni-P/diamond composite films, Mater. Res. Bull., 36(2001), No. 11, p. 1889.
      [62]
      X.Y. Zhang, Y. Ma, N.M. Lin, X.B. Huang, R.Q. Hang, A.L. Fan, and B. Tang, Microstructure, antibacterial properties and wear resistance of plasma Cu-Ni surface modified titanium, Surf. Coat. Technol., 232(2013), p. 515.
      [63]
      G.H. Zhou, H.Y. Ding, Y. Zhang, D. Hui, and A.H. Lui, Fretting behavior of nano-Al2O3 reinforced coppermatrix composites prepared by coprecipitation, Metalurgija, 15(2009), No. 3, p. 169.

    Catalog


    • /

      返回文章
      返回