留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 12
Dec.  2017
数据统计

分享

计量
  • 文章访问数:  491
  • HTML全文浏览量:  76
  • PDF下载量:  10
  • 被引次数: 0
Li-fu Hei, Yun Zhao, Jun-jun Wei, Jin-long Liu, Cheng-ming Li,  and Fan-xiu Lü, Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD, Int. J. Miner. Metall. Mater., 24(2017), No. 12, pp. 1424-1430. https://doi.org/10.1007/s12613-017-1535-x
Cite this article as:
Li-fu Hei, Yun Zhao, Jun-jun Wei, Jin-long Liu, Cheng-ming Li,  and Fan-xiu Lü, Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD, Int. J. Miner. Metall. Mater., 24(2017), No. 12, pp. 1424-1430. https://doi.org/10.1007/s12613-017-1535-x
引用本文 PDF XML SpringerLink
研究论文

Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD

  • 通讯作者:

    Li-fu Hei    E-mail: lifu_hei@163.com

  • Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV-centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000℃. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.
  • Research Article

    Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD

    + Author Affiliations
    • Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV-centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000℃. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.
    • loading
    • [1]
      H. Kanda and K. Watanabe, Distribution of nickel related luminescence centers in HPHT diamond, Diamond Relat. Mater., 8(1999), No. 8-9, p. 1463.
      [2]
      C.S. Yan, Y.K. Vohra, H.K. Mao, and R.J. Hemley, Very high growth rate chemical vapor deposition of single-crystal diamond, PNAS, 99(2002), No. 20, p. 12523.
      [3]
      I. Aharonovich, J.C. Lee, A.P. Magyar, B.B. Buckley, C.G. Yale, D.D. Awschalom, and E.L. Hu, Homoepitaxial growth of single crystal diamond membranes for quantum information processing, Adv. Mater., 24(2012), No. 10, p. 54.
      [4]
      G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J.F. Du, P. Neumann, and J. Wrachtrup, Quantum error correction in a solid-state hybrid spin register, Nature, 506(2014), p. 204.
      [5]
      P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. Markham, D.J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, and J. Wrachtrup, Quantum register based on coupled electron spins in a room-temperature solid, Nat. Phys., 6(2010), p. 249.
      [6]
      P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P.R. Hemmer, J. Wrachtrup, and F. Jelezko, Single-shot readout of a single nuclear spin, Science, 329(2010), No. 5991, p. 542.
      [7]
      S. Prawer and A.D. Greentree, Diamond for quantum computing, Science, 320(2008), No. 5883, p. 1601.
      [8]
      G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C.D. Kim, A. Wojcik, P.R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, Nanoscale imaging magnetometry with diamond spins under ambient conditions, Nature, 455(2008), p. 648.
      [9]
      F. Abbas, J. Iqbal, T. Jan, N. Badshah, Q. Mansoor, and M. Ismail, Structural, morphological, Raman, optical, magnetic, and antibacterial characteristics of CeO2 nanostructures, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 102.
      [10]
      P.F. Wang, Z.H. Yuan, P. Huang, X. Rong, M.Q. Wang, X.K. Xu, C.K. Duan, C.Y. Ju, F.Z. Shi, and J.F. Du, High-resolution vector microwave magnetometry based on solid-state spins in diamond, Nat. Commun., 2015. DOI: 10.1038/ncomms7631.
      [11]
      L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, and L.C.L. Hollenberg, Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells, Nat. Nanotechnol., 6(2011), p. 358.
      [12]
      D. Le Sage, K. Arai, D.R. Glenn, S.J. DeVience, L.M. Pham, L. Rahn-Lee, M.D. Lukin, A. Yacoby, A. Komeili, and R.L. Walsworth, Optical magnetic imaging of living cells, Nature, 496(2013), p. 486.
      [13]
      G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, and J. Wrachtrup, Ultralong spin coherence time in isotopically engineered diamond, Nat. Mater., 8(2009), p. 383.
      [14]
      N. Zhao, S.W. Ho, and R.B. Liu, Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths, Phys. Rev. B, 85(2012), No. 11, art. No. 115303.
      [15]
      J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D.J. Twitchen, A.J. Whitehead, S.E. Coe, and G.A. Scarsbrook, High carrier mobility in single-crystal plasma-deposited diamond, Science, 297(2002), No. 5587, p. 1670.
      [16]
      E. Berdermann, M. Pomorski, W. de Boer, M. Ciobanu, S. Dunst, C. Grah, M. Kiš, W. Koenig, W. Lange, W. Lohmann, R. Lovrinčić, P. Moritz, J. Morse, S. Mueller, A. Pucci, M. Schreck, S. Rahman, and M. Träger, Diamond detectors for hadron physics research, Diamond Relat. Mater., 19(2010), No. 5-6, p. 358.
      [17]
      B.R. Patton, P.R. Dolan, F. Grazioso, M.B. Wincott, J.M. Smith, M.L. Markham, D.J. Twitchen, Y.F. Zhang, E. Gu, M.D. Dawson, B.A. Fairchild, A.D. Greentree, and S. Prawer, Optical properties of single crystal diamond microfilms fabricated by ion implantation and lift-off processing, Diamond Relat. Mater., 21(2012), p. 16.
      [18]
      K. Arai, C. Belthangady, H. Zhang, N. Bar-Gill, S.J. DeVience, P. Cappellaro, A. Yacoby, and R.L. Walsworth, Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond, Nat. Nanotechnol., 10(2015), p. 859.
      [19]
      P. Maletinsky, S. Hong, M.S. Grinolds, B. Hausmann, M.D. Lukin, R.L. Walsworth, M. Loncar, and A. Yacoby, A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres, Nat. Nanotechnol., 7(2012), p. 320.
      [20]
      B.K. Ofori-Okai, S. Pezzagna, K. Chang, M. Loretz, R. Schirhagl, Y. Tao, B.A. Moores, K. Groot-Berning, J. Meijer, and C.L. Degen, Spin properties of very shallow nitrogen vacancy defects in diamond, Phys. Rev. B, 86(2012), No. 8, art. No. 081406.
      [21]
      J. Achard, A. Tallaire, R. Sussmann, F. Silva, and A. Gicquel, The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD, J. Cryst. Growth, 284(2005), No. 3-4, p. 396.
      [22]
      A.D. Greentree, B.A. Fairchild, F.M. Hossain, and S. Prawer, Diamond integrated quantum photonics, Mater. Today, 11(2008), No. 9, p. 22.
      [23]
      J.V. Busch and J.P. Dismukes, Trends and market perspectives for CVD diamond, Diamond Relat. Mater., 3(1994), No. 4-6, p. 295.
      [24]
      L.F. Hei, J. Liu, C.M. Li, J.H. Song, W.Z. Tang, and F.X. Lu, Fabrication and characterizations of large homoepitaxial single crystal diamond grown by DC arc plasma jet CVD, Diamond Relat. Mater., 30(2012), p. 77.
      [25]
      F.X. Lu, W.Z. Tang, G.F. Zhong, T.B. Huang, J.M. Liu, G.H. Li, T.L. Lo, Y.G. Zhang, Z.L. Sun, S.M. Du, Q.Y. He, and S.I. Wang, Economical deposition of a large area of high quality diamond film by a high power DC arc plasma jet operating in a gas recycling mode, Diamond Relat. Mater., 9(2000), No. 9-10, p. 1655.
      [26]
      A.M. Zaitsev, Optical Properties of Diamond:A Data Handbook, Springer, Berlin, 2001.
      [27]
      P.S. Weiser, S. Prawer, K.W. Nugent, A.A. Bettiol, L.I. Kostidis, and D.N. Jamieson, Homo-epitaxial diamond film growth on ion implanted diamond substrates, Diamond Relat. Mater., 5(1996), No. 3-5, p. 272.
      [28]
      G. Davies, Properties and Growth of Diamond, INSPEC, the Institution of Electrical Engineers, London, 1994.
      [29]
      A.A. Gippius, Luminescent characterization of radiation damage and impurities in ion-implanted natural diamond, Diamond Relat. Mater., 2(1993), No. 5-7, p. 640.
      [30]
      A.M. Zaitsev, Vibronic spectra of impurity-related optical centers in diamond, Phys. Rev. B, 61(2000), No. 19, art. No. 12909.
      [31]
      A.T. Collins and G.S. Woods, Isotope shifts of nitrogen-related localised mode vibrations in diamond, J. Phys. C, 20(1987), No. 30, p. L797.
      [32]
      A. Kurdyumov, V. Malogolovets, N. Novikov, A. Pilyankevich, and L. Shulman, Polymorphic Modifications of Carbon and Boron Nitride, Metallurgy, Moscow, 1994.
      [33]
      J.E. Field, The Properties of Natural and Synthetic Diamond, Academic Press, London, 1992.
      [34]
      K. Iakoubovskii and G.J. Adriaenssens, Luminescence excitation spectra in diamond, Phys. Rev. B, 61(2000), art. No. 10174.
      [35]
      C. Manfredotti, S. Calusi, A.L. Giudice, L. Giuntini, M. Massi, P. Olivero, and A. Re, Luminescence centers in proton irradiated single crystal CVD diamond, Diamond Relat. Mater., 19(2010), No. 7-9, p. 854.
      [36]
      A.T. Collins, The characterisation of point defects in diamond by luminescence spectroscopy, Diamond Relat. Mater., 1(1992), No. 5-6, p. 457.
      [37]
      P.M. Martineau, S.C. Lawson, A.J. Taylor, S.J. Quinn, D.J.F. Evans, and M.J. Crowder, Identification of synthetic diamond grown using chemical vapor deposition (CVD), Gems Gemol., 40(2004), p. 2.
      [38]
      J.W. Steeds, T.J. Davis, S.J. Charles, J.M. Hayes, and J.E. Butler, 3H luminescence in electron-irradiated diamond samples and its relationship to self-interstitials, Diamond Relat. Mater., 8(1999), No. 10, p. 1847.
      [39]
      S.C. Lawson and H. Kanda, An annealing study of nickel point defects in high-pressure synthetic diamond, J. Appl. Phys., 73(1993), p. 3967.
      [40]
      A.P. Yelisseyev and V.A. Nadolinny, Photoinduced absorption lines related to nickel impurity in annealed synthetic diamonds, Diamond Relat. Mater., 4(1995), No. 3, p. 177.
      [41]
      S.C. Lawson, G. Davies, A.T. Collins, and A. Mainwood, The ‘H2’ optical transition in diamond:the effects of uniaxial stress perturbations, temperature and isotopic substitution, J. Phys. Condens. Matter, 4(1992), p. 3439.
      [42]
      A. Mainwood, Nitrogen and nitrogen-vacancy complexes and their formation in diamond, Phys. Rev. B, 49(1994), No. 12, p. 7934.
      [43]
      J. Ruan, W.J. Choyke, and K. Kobashi, Oxygen-related centers in chemical vapor deposition of diamond, Appl. Phys. Lett., 62(1993), No. 12, p. 1379.
      [44]
      Y. Mokuno, A. Chayahara, H. Yamada, and N. Tsubouchi, Improving purity and size of single-crystal diamond plates produced by high-rate CVD growth and lift-off process using ion implantation, Diamond Relat. Mater., 18(2009), No. 10, p. 1258.
      [45]
      W.R. Taylor, D. Canil, and H.J. Milledge, Kinetics of Ib to IaA nitrogen aggregation in diamond, Geochim. Cosmochim. Acta, 60(1996), No. 23, p. 4725.
      [46]
      K. Iakoubovskii, G.J. Adriaenssens, and Y.K. Vohra, Nitrogen incorporation in diamond films homoepitaxially grown by chemical vapour deposition, J. Phys. Condens. Matter, 12(2000), No. 30, p. L519.
      [47]
      L. Allers and A. Mainwood, Surface vacancies in CVD diamond, Diamond Relat. Mater., 7(1998), No. 2-5, p. 261.
      [48]
      A.T. Collins, Vacancy enhanced aggregation of nitrogen in diamond, J. Phys. C, 13(1980), p. 2641.
      [49]
      G.S. Woods, I. Kiflawi, W. Luyten, and G. Van Tendeloo, Infrared spectra of type IaB diamonds, Philos. Mag. Lett., 67(1993), No. 6, p. 405.
      [50]
      N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection, New J. Phys., 15(2013), art. No. 013064.
      [51]
      G.A. Álvarez, C.O. Bretschneider, R. Fischer, P. London, H. Kanda, S. Onoda, J. Isoya, D. Gershoni, and L. Frydman, Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations, Nat. Commun., 6(2015), p. 8456.
      [52]
      K. Wang, J.W. Steeds, Z. Li, and Y. Tian, Photoluminescence studies of both the neutral and negatively charged nitrogen-vacancy center in diamond, Microsc. Microanal., 22(2016), No. 1, p. 108.

    Catalog


    • /

      返回文章
      返回